Giá trị của \(x\) thỏa mãn phương trình \(\sqrt {{x^2} - 9} - 3\sqrt {x - 3} = 0\) với \(x \ge 3\) là
Với \(B \ge 0\), ta có \(\sqrt {{A^2}.B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \,\,\,\,khi\,\,\,\,A \ge 0\\ - A\sqrt B \,\,\,khi\,\,\,A < 0\end{array} \right..\)
Áp dụng hằng đẳng thức đáng nhớ: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)
Phân tích biểu thức ở trong căn thành nhân tử.
Giải phương trình : \(\sqrt {f\left( x \right)} = a\,\,\,\left( {a \ge 0} \right) \) hay \( f\left( x \right) = {a^2}.\)
Điều kiện : \(x \ge 3.\)
\(\begin{array}{l}\sqrt {{x^2} - 9} - 3\sqrt {x - 3} = 0\\ \sqrt {\left( {x - 3} \right)\left( {x + 3} \right)} - 3\sqrt {x - 3} = 0\\ \sqrt {x - 3} \left( {\sqrt {x + 3} - 3} \right) = 0\\ \left[ \begin{array}{l}\sqrt {x - 3} = 0\\\sqrt {x + 3} - 3 = 0\end{array} \right. \\\left[ \begin{array}{l}x - 3 = 0\\\sqrt {x + 3} = 3\end{array} \right.\\ \left[ \begin{array}{l}x = 3\\x + 3 = 9\end{array} \right.\\ \left[ \begin{array}{l}x = 3\,\,\,\,\,\left( {tm} \right)\\x = 6\,\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Đáp án : A
Các bài tập cùng chuyên đề
Cho các biểu thức $A,B$ mà $A.B \ge 0;B > 0$, khẳng định nào sau đây là đúng?
Cho các biểu thức với $A < 0$ và $B \ge 0$ , khẳng định nào sau đây là đúng?
Đưa thừa số $\sqrt {81{{\left( {2 - y} \right)}^4}} $ ra ngoài dấu căn ta được ?
Đưa thừa số $5y\sqrt y $ ($y \ge 0$) vào trong dấu căn ta được
Đưa thừa số $x\sqrt {\dfrac{{ - 35}}{x}} $ ($x < 0$) vào trong dấu căn ta được
So sánh hai số $5\sqrt 3 $ và $4\sqrt 5 $
Khử mẫu biểu thức sau $ xy\sqrt {\dfrac{4}{{x^2y^2}}} $ với $x > 0;y > 0$ ta được
Khử mẫu biểu thức sau $ - xy\sqrt {\dfrac{3}{{xy}}} $ với $x < 0;y < 0$ ta được
Sau khi rút gọn biểu thức $\dfrac{1}{{5 + 3\sqrt 2 }} + \dfrac{1}{{5 - 3\sqrt 2 }}$ ta được phân số tối giản $\dfrac{a}{b},\left( {a,b \in \mathbb{Z}} \right)$. Khi đó $2a$ có giá trị là:
Rút gọn biểu thức \(\sqrt {32x} + \sqrt {50x} - 2\sqrt {8x} + \sqrt {18x} \) với $x \ge 0$ ta được kết quả là
Rút gọn biểu thức \(5\sqrt a - 4b\sqrt {25{a^3}} + 5a\sqrt {16a{b^2}} - \sqrt {9a} \) với $a \ge 0;b \ge 0$ ta được kết quả là
Giá trị của biểu thức \(2\sqrt {\dfrac{{16a}}{3}} - 3\sqrt {\dfrac{a}{{27}}} - 6\sqrt {\dfrac{{4a}}{{75}}} \) là
Trục căn thức ở mẫu biểu thức \(\dfrac{{2a}}{{2 - \sqrt a }}\)với $a \ge 0;a \ne 4$ ta được
Trục căn thức ở mẫu biểu thức \(\dfrac{6}{{\sqrt x + \sqrt {2y} }}\)với $x \ge 0;y \ge 0$ ta được
Tính giá trị biểu thức\(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7 - \sqrt 5 }}.\)
Giá trị biểu thức $\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} - 4\sqrt {\dfrac{3}{2}} $ là giá trị nào sau đây?
Cho ba biểu thức $P = x\sqrt y + y\sqrt x ;Q = x\sqrt x + y\sqrt y ;$
$R = x - y$. Biểu thức nào bằng với biểu thức $\left( {\sqrt x - \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)$ với $x,y$ không âm.
Số nghiệm của phương trình \(\sqrt {4{x^2} - 9} = 2\sqrt {2x + 3} \) là
Phương trình \(\dfrac{2}{3}\sqrt {9x - 9} - \dfrac{1}{4}\sqrt {16x - 16} + 27\sqrt {\dfrac{{x - 1}}{{81}}} = 4\) có mấy nghiệm?
Giá trị của biểu thức \(\sqrt {\dfrac{3}{{20}}} + \sqrt {\dfrac{1}{{60}}} - 2\sqrt {\dfrac{1}{{15}}} \) là