Đề bài

Số điểm cực trị của hàm số \(y = \left| {\left( {x - 1} \right){{\left( {x - 2} \right)}^2}} \right|\) là:

  • A.
    3
  • B.
    1
  • C.
    4
  • D.
    2
Phương pháp giải

- Xét hàm số \(y = \left( {x - 1} \right){\left( {x - 2} \right)^2}\), lập BBT của đồ thị hàm số.

- Từ đó suy ra BBT của đồ thị hàm số \(y = \left| {\left( {x - 1} \right){{\left( {x - 2} \right)}^2}} \right|\) từ đồ thị hàm số \(y = \left( {x - 1} \right){\left( {x - 2} \right)^2}\) bằng cách giữ nguyên phần đồ thị phía trên trục hoành, lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.

- Từ BBT của đồ thị hàm số \(y = \left| {\left( {x - 1} \right){{\left( {x - 2} \right)}^2}} \right|\) suy ra số điểm cực trị của hàm số.

Lời giải của GV Loigiaihay.com

Xét hàm số \(y = \left( {x - 1} \right){\left( {x - 2} \right)^2} = {x^3} - 5{x^2} + 8x - 4\).

TXĐ: \(D = \mathbb{R}\).

Ta có \(y' = 3{x^2} - 10x + 8\).

\(y' = 0 \Leftrightarrow 3{x^2} - 10x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \dfrac{4}{3}\end{array} \right.\)

BBT:

Từ BBT của đồ thị hàm số \(y = \left( {x - 1} \right){\left( {x - 2} \right)^2}\) ta suy ra BBT của đồ thị hàm số \(y = \left| {\left( {x - 1} \right){{\left( {x - 2} \right)}^2}} \right|\) như sau:

Từ BBT ta thấy hàm số \(y = \left| {\left( {x - 1} \right){{\left( {x - 2} \right)}^2}} \right|\) có 3 điểm cực trị.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì

Xem lời giải >>
Bài 2 :

Giả sử $y = f\left( x \right)$ có đạo hàm cấp hai trên $\left( {a;b} \right)$. Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$ thì 

Xem lời giải >>
Bài 3 :

Nếu ${x_0}$ là điểm cực tiểu của hàm số thì $f\left( {{x_0}} \right)$ là:

Xem lời giải >>
Bài 4 :

Nếu ${x_0}$ là điểm cực đại của hàm số thì $\left( {{x_0};f\left( {{x_0}} \right)} \right)$ là:

Xem lời giải >>
Bài 5 :

Cho các phát biểu sau:

1. Hàm số $y = f\left( x \right)$ đạt cực đại tại ${x_0}$ khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua ${x_0}$.

2. Hàm số $y = f\left( x \right)$ đạt cực trị tại ${x_0}$ khi và chỉ khi ${x_0}$ là nghiệm của đạo hàm.

3. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_0}} \right) = 0$ thì ${x_0}$ không phải là cực trị của hàm số $y = f\left( x \right)$ đã cho.

4. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_o}} \right) > 0$ thì hàm số đạt cực đại tại ${x_0}$.

Các phát biểu đúng là:

Xem lời giải >>
Bài 6 :

Điều kiện để hàm số bậc ba không có cực trị là phương trình $y' = 0$ có:

Xem lời giải >>
Bài 7 :

Chọn phát biểu đúng:

Xem lời giải >>
Bài 8 :

Số điểm cực trị của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là:

Xem lời giải >>
Bài 9 :

Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = {x^3} - 3{x^2} + 1$ là:

Xem lời giải >>
Bài 10 :

Hàm số nào sau đây không có cực trị?

Xem lời giải >>
Bài 11 :

Hàm số $f\left( x \right) = 2\sin 2x - 3$ đạt cực tiểu tại:

Xem lời giải >>
Bài 12 :

Đồ thị hàm số nào sau đây có $3$ điểm cực trị?

Xem lời giải >>
Bài 13 :

Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = \left( {x -1}\right)\left({{x^2}- 2} \right)\left( {{x^4} - 4} \right)$. Số điểm cực trị của hàm số $y = f\left( x \right)$ là:

Xem lời giải >>
Bài 14 :

Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:

Xem lời giải >>
Bài 15 :

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên trên khoảng $\left( {0;2} \right)$ như sau:

Khẳng định nào sau đây là khẳng định đúng:

Xem lời giải >>
Bài 16 :

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định sai:

Xem lời giải >>
Bài 17 :

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Xem lời giải >>
Bài 18 :

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình bên dưới, chọn khẳng định sai:

Xem lời giải >>
Bài 19 :

Hàm số $y = {x^3} - 3x^2 + 4$ đạt cực tiểu tại:

Xem lời giải >>
Bài 20 :

Cho hàm số $y = \dfrac{{ - {x^2} + 3x + 6}}{{x + 2}}$, chọn kết luận đúng:

Xem lời giải >>