Đề bài

Sóng truyền từ điểm M đến điểm O rồi đến điểm N trên cùng một phương truyền sóng với tốc độ \(v = 20m/s\). Cho biết tại O dao động có phương trình \({u_O} = 4cos\left( {2\pi f - \dfrac{\pi }{2}} \right)cm\) và tại hai điểm gần nhau nhất cách nhau \(6m\) trên cùng phương truyền sóng thì dao động lệch pha nhau góc \(\dfrac{{2\pi }}{3}rad\). Cho \(ON = 50cm\). Phương trình sóng tại N là

  • A.
    \({u_N} = 4cos\left( {\dfrac{{40\pi t}}{9} + \dfrac{{5\pi }}{9}} \right)cm.\)
  • B.
    \({u_N} = 4cos\left( {\dfrac{{40\pi t}}{9} - \dfrac{{5\pi }}{9}} \right)cm.\)
  • C.
    \({u_N} = 4cos\left( {\dfrac{{20\pi t}}{9} - \dfrac{{5\pi }}{9}} \right)cm\)
  • D.
    \({u_N} = 4cos\left( {\dfrac{{20\pi t}}{9} + \dfrac{{5\pi }}{9}} \right)cm.\)
Phương pháp giải

+ Sử dụng biểu thức tính độ lệch pha:  $\Delta \varphi  = \dfrac{{2\pi d}}{\lambda }$

+ Sử dụng biểu thức:  $\lambda  = \dfrac{v}{f}$

Lời giải của GV Loigiaihay.com

+ Độ lệch pha giữa hai điểm gần nhau nhất cách nhau \(6m\) trên phương truyền sóng dao động lệch pha nhau \(\Delta \varphi  = \dfrac{{2\pi d}}{\lambda } = \dfrac{{2\pi }}{3}\)

\( \Rightarrow \lambda  = \dfrac{{2\pi .6}}{{\dfrac{{2\pi }}{3}}} = 18m\)

Lại có: \(\lambda  = \dfrac{v}{f} \Rightarrow f = \dfrac{v}{\lambda } = \dfrac{{20}}{{18}} = \dfrac{{10}}{9}Hz\)

\( \Rightarrow \omega  = 2\pi f = \dfrac{{20\pi }}{9}\left( {rad/s} \right)\)

+ Phương trình sóng tại N: \({u_N} = 4cos\left( {\dfrac{{20\pi }}{9}t - \dfrac{\pi }{2} - \dfrac{{2\pi .ON}}{\lambda }} \right) = 4\cos \left( {\dfrac{{20\pi }}{9}t - \dfrac{{5\pi }}{9}} \right)cm\)

Đáp án : C

Các bài tập cùng chuyên đề