Hai điểm sáng cùng dao động trên trục Ox với các phương trình li độ lần lượt là \({x_1} = Acos\left( {2\pi t + \dfrac{\pi }{6}} \right)\) ; \({x_2} = Acos\left( {2\pi t + \dfrac{{5\pi }}{6}} \right)\). Thời điểm mà hai điểm sáng có cùng li độ lần thứ 2020 là
Vận dụng vòng tròn lượng giác và trục thời gian suy ra từ vòng tròn
Chu kì dao động của 2 điểm sáng \(T = 1s\)
Ta có li độ của 2 điểm sáng bằng nhau: \({x_1} = {x_2}\)
\(\Rightarrow d = {x_1} - {x _2} = 0\)
Ta có: \({x_1} - {x_2} = A\angle \dfrac{\pi }{6} - A\angle \dfrac{{5\pi }}{6} = A\sqrt 3 \angle 0\)
\( \Rightarrow d = A\sqrt 3 cos\left( {2\pi t} \right)\)
Trong 1 chu kì có 2 vị trí \(d = 0\)
\({t_{2020}} = {t_{2018}} + {t_2}\)
\({t_{2018}} = \dfrac{{2018T}}{2} = 1009T\)
Từ vòng tròn lượng giác ta suy ra \({t_2} = \dfrac{{3T}}{4}\)
\( \Rightarrow {t_{2020}} = 1009T + \dfrac{{3T}}{4} = \dfrac{{4039T}}{4} = \dfrac{{4039.1}}{4} = 1009,75s\)
Đáp án : C
Các bài tập cùng chuyên đề
Vận tốc của vật dao động điều hoà có phương trình li độ $x = A\cos \left( {\omega t - \dfrac{\pi }{3}} \right)$ có độ lớn cực đại khi:
Gia tốc của một vật dao động điều hoà có phương trình li độ $x = A\cos \left( {\omega t - \dfrac{{5\pi }}{6}} \right)$ có độ lớn cực đại. Khi:
Một vật dao động điều hòa với biên độ $A$ quanh vị trí cân bằng $0$, thời gian ngắn nhất để vật di chuyển từ vị trí có ly độ $x = - \dfrac{A}{2}$ đến vị trí có ly độ $x = A$ là $\dfrac{1}{2}s$, chu kỳ dao động:
Vật dao động điều hòa theo phương trình: \(x = 5c{\rm{os}}\left( {2\pi t - \frac{\pi }{3}} \right)cm\). Xác định thời gian ngắn nhất kể từ khi vật bắt đầu chuyển động đến vị trí có li độ \(x = \frac{{5\sqrt 2 }}{2}\) lần thứ nhất?
Một chất điểm dao động điều hòa với chu kì $T$ và biên độ $5cm$. Biết trong một chu kì, khoảng thời gian để vật nhỏ của chất điểm có độ lớn gia tốc không vượt quá $100cm/{s^2}$ là \(\dfrac{T}{3}\). Lấy ${\pi ^2} = 10$. Tần số dao động của vật là:
Một chất điểm đang dao động điều hòa trên một đoạn thẳng xung quanh vị trí cân bằng O. Gọi M, N là hai điểm trên đường thẳng cùng cách đều O. Biết cứ $0,05s$ thì chất điểm lại đi qua các điểm M, O, N và tốc độ của nó đi qua vị trí M, N là $20\pi \left( {cm/s} \right)$. Biên độ A bằng.
Một vật nhỏ dao động điều hòa với chu kì $T$ và biên độ $8 cm$. Biết trong một chu kì, khoảng thời gian để vật nhỏ có độ lớn vận tốc không vượt quá $16 cm/s$ là $\dfrac{T}{3}$. Tần số góc của dao động là:
Một vật dao động điều hòa theo phương trình \(x = 8c{\rm{os}}\left( {2\pi t + \dfrac{\pi }{6}} \right)cm\). Xác định thời gian vật chuyển động từ thời điểm $t=0,75s$ đến khi vật có li độ $x=-4 cm$ lần thứ $2$?
Một vật dao động được kích thích để dao động điều hòa với vận tốc cực đại bằng $3 m/s$ và gia tốc cực đại bằng $30\pi m/{s^2}$. Thời điểm ban đầu $t = 0$ vật có vận tốc $v=+1,5 m/s$ và thế năng đang tăng. Hỏi sau đó bao lâu vật có gia tốc bằng $ - 15\pi m/{s^2}$
Một chất điểm dao động điều hòa theo phương trình \(x = 4c{\rm{os}}\left( {\dfrac{{2\pi }}{3}t} \right)cm\)(x tính bằng cm, t tính bằng giây). Kể từ $t=0$, chất điểm đi qua vị trí có li độ $x= -2cm$ lần thứ $2011$ tại thời điểm:
Một vật dao động điều hòa với phương trình: \(x = 10c{\rm{os}}\left( {20\pi t - \dfrac{\pi }{6}} \right)cm\). Xác định thời điểm thứ $2016$ vật có gia tốc bằng không?
Một vật dao động điều hòa với phương trình: \(x = 8c{\rm{os}}\left( {2\pi t - \dfrac{\pi }{6}} \right)cm\). Thời điểm lần thứ $2010$ kể từ lúc bắt đầu dao động, vật qua vị trí có vận tốc $v= -8π cm/s$ là bao nhiêu?
Một vật dao động điều hòa với phương trình: \(x = 6c{\rm{os}}\left( {4\pi t + \frac{\pi }{4}} \right)cm\). Khoảng thời gian vật qua vị trí có li độ \(x = 3\sqrt 2 cm\) theo chiều dương lần thứ $2017$ kể từ lúc $t=0,125s$ là?
Một vật dao động theo phương trình \(x = 3\cos \left( {5\pi t - \frac{{2\pi }}{3}} \right)cm\). Trong giây đầu tiên vật qua vị trí cân bằng bao nhiêu lần?
Một chất điểm dao động điều hòa theo phương trình \(x = 3\sin \left( {5\pi t + \frac{\pi }{6}} \right)cm\) (x tính bằng cm, t tính bằng giây). Trong một giây đầu tiên từ thời điểm $t = 0,4s$, chất điểm đi qua vị trí có li độ $x = + 1 cm$
Một vật dao động điều hoà với phương trình \(x = 8\cos \left( {2\pi t - \frac{\pi }{3}} \right)cm\). Tìm số lần vật qua vị trí có vận tốc \(v = - 8\pi \left( {cm/s} \right)\) trong thời gian $5,75s$ tính từ thời điểm gốc.
Một vật dao động điều hoà với phương trình $x = 4c{\rm{os}}\left( {4\pi t + \dfrac{\pi }{6}} \right)cm$. Tìm số lần vật qua vị trí có gia tốc là $32{\pi ^2}cm/{s^2}$ theo chiều dương trong thời gian $5,75s$ tính từ thời điểm gốc.