Hai điểm sáng cùng dao động trên trục Ox với các phương trình li độ lần lượt là \({x_1} = Acos\left( {2\pi t + \dfrac{\pi }{6}} \right)\) ; \({x_2} = Acos\left( {2\pi t + \dfrac{{5\pi }}{6}} \right)\). Thời điểm mà hai điểm sáng có cùng li độ lần thứ 2020 là
Vận dụng vòng tròn lượng giác và trục thời gian suy ra từ vòng tròn
Chu kì dao động của 2 điểm sáng \(T = 1s\)
Ta có li độ của 2 điểm sáng bằng nhau: \({x_1} = {x_2}\)
\(\Rightarrow d = {x_1} - {x _2} = 0\)
Ta có: \({x_1} - {x_2} = A\angle \dfrac{\pi }{6} - A\angle \dfrac{{5\pi }}{6} = A\sqrt 3 \angle 0\)
\( \Rightarrow d = A\sqrt 3 cos\left( {2\pi t} \right)\)
Trong 1 chu kì có 2 vị trí \(d = 0\)
\({t_{2020}} = {t_{2018}} + {t_2}\)
\({t_{2018}} = \dfrac{{2018T}}{2} = 1009T\)

Từ vòng tròn lượng giác ta suy ra \({t_2} = \dfrac{{3T}}{4}\)
\( \Rightarrow {t_{2020}} = 1009T + \dfrac{{3T}}{4} = \dfrac{{4039T}}{4} = \dfrac{{4039.1}}{4} = 1009,75s\)
Đáp án : C

Các bài tập cùng chuyên đề