Đề bài

Tìm tham số $m$ để đường thẳng $d:y = mx + m + 1$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.

  • A.

    $\left\{ \begin{array}{l}m < 0\\m \ne  - 2\end{array} \right.$ 

  • B.

    $\left\{ \begin{array}{l}m <  - 1\\m \ne  - 2\end{array} \right.$

  • C.

    $m >  - 1$ 

  • D.

    $m \ge  - 2$ 

Phương pháp giải

Bước 1: Viết phương trình hoành độ giao điểm (*)

Bước 2:  Đường thẳng $d$ cắt $\left( P \right)$ tại hai điểm phân biệt nằm bên trái trục tung $ \Leftrightarrow $ phương trình (*) có hai nghiệm âm phân biệt $ \Leftrightarrow \left\{ \begin{array}{l}\Delta  > 0\\S < 0\\P > 0\end{array} \right.$

Lời giải của GV Loigiaihay.com

Phương trình hoành độ giao điểm ${x^2} = mx + m + 1 \Leftrightarrow {x^2} - mx - m - 1 = 0\left( * \right)$ có

$\Delta  = {m^2} - 4\left( { - m - 1} \right) = {m^2} + 4m + 4 = {\left( {m + 2} \right)^2} \ge 0$, $\forall m$; $S = {x_1} + {x_2} = m;P = {x_1}.{x_2} =  - m - 1$ với ${x_1};{x_2}$ là hai nghiệm của phương trình (*).

Đường thẳng $d$ cắt $\left( P \right)$ tại hai điểm phân biệt nằm bên trái trục tung $ \Leftrightarrow $ phương trình (*) có hai nghiệm âm phân biệt $ \Leftrightarrow \left\{ \begin{array}{l}\Delta  > 0\\S < 0\\P > 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 2} \right)^2} > 0\\m < 0\\ - m - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne  - 2\\m < 0\\m <  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m <  - 1\\m \ne  - 2\end{array} \right.$

Vậy $\left\{ \begin{array}{l}m <  - 1\\m \ne  - 2\end{array} \right.$ .

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Đường thẳng $d:y = mx + n$ và  parabol  $\left( P \right):y = a{x^2}$$\left( {a \ne 0} \right)$ tiếp xúc với nhau khi  phương trình $a{x^2} = mx + n$ có

Xem lời giải >>
Bài 2 :

Chọn khẳng định đúng. Nếu phương trình $a{x^2} = mx + n$ vô nghiệm thì đường thẳng $d:y = mx + n$ và  parabol  $\left( P \right):y = a{x^2}$

Xem lời giải >>
Bài 3 :

Số giao điểm của đường thẳng $d:y = 2x + 4$ và  parabol  $\left( P \right):y = {x^2}$ là:

Xem lời giải >>
Bài 4 :

Tìm tham số $m$ để đường thẳng $d:y = \dfrac{1}{2}x + m$ tiếp xúc với  parabol  $\left( P \right):y = \dfrac{{{x^2}}}{2}$

Xem lời giải >>
Bài 5 :

Tìm tham số $m$ để đường thẳng $d:y = mx + 2$ cắt  parabol  $\left( P \right):y = \dfrac{{{x^2}}}{2}$  tại hai điểm phân biệt

Xem lời giải >>
Bài 6 :

Tìm tham số $m$ để đường thẳng $d:y = 2x + m$ và  parabol  $\left( P \right):y = 2{x^2}$  không có điểm chung

Xem lời giải >>
Bài 7 :

Tìm tham số $m$ để đường thẳng $d:y = \left( {m - 2} \right)x + 3m$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt nằm hai phía của trục tung.

Xem lời giải >>
Bài 8 :

Có bao nhiêu giá trị của  tham số $m$ để đường thẳng $d:y = 2mx + 4$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt có hoành độ ${x_1};{x_2}$ thỏa mãn $\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} =  - 3$

Xem lời giải >>
Bài 9 :

Có bao nhiêu giá trị nguyên của  tham số $m$ để đường thẳng $d:y = 2mx - 2m + 3$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt có tọa độ $\left( {{x_1};{y_1}} \right);\left( {{x_2};{y_2}} \right)$ thỏa mãn ${y_1} + {y_2} < 9$

Xem lời giải >>
Bài 10 :

Cho đường thẳng \(d\) :\(y =  - 3x + 1\) và parabol : \(\left( P \right)\)\(y = m{x^2}\left( {m \ne 0} \right)\). Tìm \(m\) để \(d\) và \(\left( P \right)\) cắt nhau tại hai điểm \(A\) và \(B\) phân biệt và cùng nằm về một phía đối với trục tung.

Xem lời giải >>
Bài 11 :

Tìm giá trị của  tham số $m$ để đường thẳng $d:y =  - \dfrac{1}{2}x + m$ và  parabol  $\left( P \right):y =  - \dfrac{1}{4}{x^2}$  cắt nhau tại hai điểm phân biệt có hoành độ ${x_1};{x_2}$ thỏa mãn \(3{x_1} + 5{x_2} = 5\)

Xem lời giải >>
Bài 12 :

Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(d:y = \left( {{m^2} + 2} \right)x - {m^2}\). Tìm \(m\) để \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt nằm về bên phải trục tung.

Xem lời giải >>
Bài 13 :

Cho parabol \(\left( P \right)\) có đỉnh \(O\) và đi qua điểm \(A\left( {2;4} \right)\) và đường thẳng  \(\left( d \right):y = 2(m - 1)x + 2m + 2\) (với \(m\) là tham số). Giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\)  tại hai điểm phân biệt là

Xem lời giải >>
Bài 14 :

Cho parabol \(\left( P \right):y = a{x^2}\left( {a \ne 0} \right)\)  đi qua điểm \(A\left( { - 2;4} \right)\) và tiếp xúc với đồ thị \(\left( d \right)\) của hàm số \(y = 2(m - 1)x - (m - 1)\).Toạ độ tiếp điểm là

Xem lời giải >>