Giá trị nào dưới đây gần nhất với giá trị của \(m\)để phương trình \({x^2} + 3x - m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(2{x_1} + 3{x_2} = 13\).
$416$
$415$
$414$
$418$
Bước 1. Tìm điều kiện để phương trình có nghiệm \(\left\{ \begin{array}{l}a \ne 0\\\Delta \ge 0\end{array} \right.\).
Bước 2. Từ hệ thức đã cho và hệ thức Vi-ét, tìm được điều kiện của tham số.
Bước 3. Kiểm tra điều kiện của tham số xem có thỏa mãn điều kiện ở bước 1 hay không rồi kết luận.
Phương trình \({x^2} + 3x - m = 0\) có $a = 1 \ne 0$ và $\Delta = 9 + 4m$
Phương trình có hai nghiệm \({x_1},{x_2}\) khi $\Delta \ge 0 \Leftrightarrow 9 + 4m \ge 0 \Leftrightarrow m \ge - \dfrac{9}{4}$.
Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} = - 3\,\,\,\left( 1 \right)\\{x_1}.{x_2} = - m\,\,\left( 2 \right)\end{array} \right.$
Xét \(2{x_1} + 3{x_2} = 13\)$ \Leftrightarrow {x_1} = \dfrac{{13 - 3{x_2}}}{2}$ thế vào phương trình $\left( 1 \right)$ ta được $\dfrac{{13 - 3{x_2}}}{2} + {x_2} = - 3 \Leftrightarrow {x_2} = 19 \Rightarrow {x_1} = - 22$
Từ đó phương trình $\left( 2 \right)$ trở thành $ - 19.22 = - m \Leftrightarrow m = 418$ (nhận)
Vậy $m = 418$ là giá trị cần tìm.
Đáp án : D
Các bài tập cùng chuyên đề
Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có hai nghiệm ${x_1};{x_2}$. Khi đó
Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có $a - b + c = 0$. Khi đó
Cho hai số có tổng là $S$ và tích là $P$ với ${S^2} \ge 4P$. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây?
Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 5x + 2 = 0$. Không giải phương trình, tính giá trị của biểu thức $A = x_1^2 + x_2^2$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình $ - 2{x^2} - 6x - 1 = 0$. Không giải phương trình, tính giá trị của biểu thức $N = \dfrac{1}{{{x_1} + 3}} + \dfrac{1}{{{x_2} + 3}}$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 20x - 17 = 0$. Không giải phương trình, tính giá trị của biểu thức $C = x_1^3 + x_2^3$
Biết rằng phương trình $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.
Tìm hai nghiệm của phương trình $18{x^2} + 23x + 5 = 0$ sau đó phân tích đa thức $A = 18{x^2} + 23x + 5$ sau thành nhân tử.
Tìm $u - v$ biết rằng $u + v = 15,uv = 36$ và $u > v$
Lập phương trình nhận hai số $3 - \sqrt 5 $ và $3 + \sqrt 5 $ làm nghiệm.
Biết rằng phương trình \({x^2} - \left( {2a - 1} \right)x - 4a - 3 = 0\) luôn có hai nghiệm ${x_1};{x_2}$ với mọi $a$. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào \(a\).
Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 1} \right)x - m + 2 = 0\) có hai nghiệm trái dấu.
Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.
Tìm các giá trị nguyên của \(m\) để phương trình \({x^2} - 6x + 2m + 1 = 0\) có hai nghiệm dương phân biệt
Tìm các giá trị của \(m\) để phương trình \(m{x^2} - 2\left( {m - 2} \right)x + 3\left( {m - 2} \right) = 0\) có hai nghiệm phân biệt cùng dấu.
Tìm các giá trị của \(m\) để phương trình \({x^2} - mx - m - 1 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^3 + x_2^3 = - 1\).
Tìm các giá trị của \(m\) để phương trình \({x^2} - 5x + m + 4 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^2 + x_2^2 = 23\).
Tìm giá trị của \(m\) để phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có hai nghiệm \({x_1},{x_2}\) và biểu thức \(A = {\left( {{x_1} - {x_2}} \right)^2}\) đạt giá trị nhỏ nhất.
Tìm giá trị của \(m\) để phương trình \({x^2} - 2(m - 2)x + 2m - 5 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \({x_1}(1 - {x_2}) + {x_2}(1 - {x_1}) < 4\)