Đề bài

Biết rằng phương trình \({x^2} - \left( {2a - 1} \right)x - 4a - 3 = 0\) luôn có hai nghiệm ${x_1};{x_2}$ với mọi $a$. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào \(a\).

  • A.

    $2\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} = 5$

  • B.

    $2\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} =  - 5$

  • C.

    $2\left( {{x_1} + {x_2}} \right) + {x_1}{x_2} = 5$

  • D.

    $2\left( {{x_1} + {x_2}} \right) + {x_1}{x_2} =  - 5$

Phương pháp giải

- Sử dụng định lí Viète: Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình $a{x^2} + bx + c = 0\,(a \ne 0)$ thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

-Biến đổi hệ thức thu được (dùng phương pháp cộng đại số, phương pháp thế…) để triệt tiêu tham số.

Lời giải của GV Loigiaihay.com

Theo định lí Viète, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2a - 1\\{x_1} \cdot {x_2} =  - 4a - 3\end{array} \right.\)

$\left\{ \begin{array}{l}2\left( {{x_1} + {x_2}} \right) = 4a - 2\\{x_1}.{x_2} =  - 4a - 3\end{array} \right.$

Cộng từng vế của hai phương trình trong hệ với nhau, ta được:

$2\left( {{x_1} + {x_2}} \right) + {x_1}{x_2} =  - 5$

Vậy hệ thức cần tìm là $2\left( {{x_1} + {x_2}} \right) + {x_1}{x_2} =  - 5$.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có hai nghiệm ${x_1};{x_2}$. Khi đó

Xem lời giải >>
Bài 2 :

Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có $a - b + c = 0$. Khi đó

Xem lời giải >>
Bài 3 :

Cho hai số có tổng là $S$ và tích là $P$ với ${S^2} \ge 4P$. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây?

Xem lời giải >>
Bài 4 :

Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$

Xem lời giải >>
Bài 5 :

Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 5x + 2 = 0$. Không giải phương trình, tính giá trị của biểu thức $A = x_1^2 + x_2^2$

Xem lời giải >>
Bài 6 :

Gọi ${x_1};{x_2}$ là nghiệm của phương trình $ - 2{x^2} - 6x - 1 = 0$. Không giải phương trình, tính giá trị của biểu thức $N = \dfrac{1}{{{x_1} + 3}} + \dfrac{1}{{{x_2} + 3}}$

Xem lời giải >>
Bài 7 :

Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 20x - 17 = 0$. Không giải phương trình, tính giá trị của biểu thức $C = x_1^3 + x_2^3$

Xem lời giải >>
Bài 8 :

Biết rằng phương trình  $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.

Xem lời giải >>
Bài 9 :

Tìm hai nghiệm của phương trình $18{x^2} + 23x + 5 = 0$ sau đó phân tích đa thức $A = 18{x^2} + 23x + 5$ sau thành nhân tử.

Xem lời giải >>
Bài 10 :

Tìm $u - v$ biết rằng $u + v = 15,uv = 36$ và $u > v$

Xem lời giải >>
Bài 11 :

Lập phương trình nhận hai số $3 - \sqrt 5 $ và $3 + \sqrt 5 $ làm nghiệm.

Xem lời giải >>
Bài 12 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 1} \right)x - m + 2 = 0\) có hai nghiệm trái dấu.

Xem lời giải >>
Bài 13 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.

Xem lời giải >>
Bài 14 :

Tìm các giá trị nguyên của \(m\) để phương trình \({x^2} - 6x + 2m + 1 = 0\) có hai nghiệm dương phân biệt

Xem lời giải >>
Bài 15 :

Tìm các giá trị của \(m\) để phương trình \(m{x^2} - 2\left( {m - 2} \right)x + 3\left( {m - 2} \right) = 0\) có hai nghiệm phân biệt cùng dấu.

Xem lời giải >>
Bài 16 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - mx - m - 1 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^3 + x_2^3 =  - 1\).

Xem lời giải >>
Bài 17 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 5x + m + 4 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^2 + x_2^2 = 23\).

Xem lời giải >>
Bài 18 :

Giá trị nào dưới đây gần nhất với giá trị của \(m\)để phương trình \({x^2} + 3x - m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(2{x_1} + 3{x_2} = 13\).

Xem lời giải >>
Bài 19 :

Tìm giá trị của \(m\) để phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có hai nghiệm \({x_1},{x_2}\) và biểu thức \(A = {\left( {{x_1} - {x_2}} \right)^2}\) đạt giá trị nhỏ nhất.

Xem lời giải >>
Bài 20 :

Tìm giá trị của \(m\) để phương trình \({x^2} - 2(m - 2)x + 2m - 5 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \({x_1}(1 - {x_2}) + {x_2}(1 - {x_1}) < 4\)

Xem lời giải >>