Đề bài

Cho phương trình \(m{x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\). Với giá trị nào dưới đây của $m$ thì phương trình không có hai nghiệm phân biệt.

  • A.

    $m =  - \dfrac{5}{4}$

  • B.

    $m = \dfrac{1}{4}$

  • C.

    $m = \dfrac{5}{4}$

  • D.

    $m =  - \dfrac{1}{4}$

Phương pháp giải

Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b = 2b'$

Khi đó, phương trình có hai nghiệm phân biệt khi \(a \ne 0\) và \(\Delta ' > 0\)

Lời giải của GV Loigiaihay.com

Phương trình \(m{x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\) có $a = m;b' =  - \left( {m - 1} \right);c = m - 3$

Suy ra $\Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - m\left( {m - 3} \right)$ $= m + 1$

Để phương trình có hai nghiệm phân biệt thì $a \ne 0$ và $\Delta ' > 0$

Suy ra $m \ne 0$ và $m + 1 > 0$

hay $m \ne 0$ và $m >  - 1$

Nên với đáp án $A$: $m=-\dfrac{5}{4}<-1$ thì phương trình không có hai nghiệm phân biệt.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $b = 2b';\Delta ' = b{'^2} - ac$. Phương trình đã cho có hai nghiệm phân biệt khi

Xem lời giải >>
Bài 2 :

Cho phương trình bậc hai một ẩn $a{{x}^{2}}+bx+c=0\left( a\ne 0 \right)$, với $b=2b'$ và biệt thức $\Delta '=b{{'}^{2}}-ac$. Nếu $\Delta ' = 0$ thì

Xem lời giải >>
Bài 3 :

Tính $\Delta '$ và tìm số nghiệm của phương trình \(7{x^2} - 12x + 4 = 0\) .

Xem lời giải >>
Bài 4 :

Tìm $m$ để phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ có nghiệm là $x = 2$.

Xem lời giải >>
Bài 5 :

Tính $\Delta '$ và tìm nghiệm của phương trình \(2{x^2} + 2\sqrt {11} x + 3 = 0\) .

Xem lời giải >>
Bài 6 :

Cho phương trình \(\left( {m - 3} \right){x^2} - 2mx + m - 6 = 0\). Tìm các giá trị của $m$ để phương trình vô nghiệm

Xem lời giải >>
Bài 7 :

Cho phương trình \((m - 2){x^2} - 2(m + 1)x + m = 0\). Tìm các giá trị của $m$ để phương trình  có một nghiệm

Xem lời giải >>
Bài 8 :

Tìm các giá trị của $m$ để phương trình \(m{x^2} - 2\left( {m - 1} \right)x + m + 2 = 0\)  có nghiệm

Xem lời giải >>
Bài 9 :

Trong trường hợp phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có hai nghiệm phân biệt. Hai nghiệm của phương trình là

Xem lời giải >>
Bài 10 :

Cho phương trình \({x^2} + \left( {a + b + c} \right)x + \left( {ab + bc + ca} \right) = 0\) với \(a,b,c\) là ba cạnh của một tam giác. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 11 :

Với giá trị nào của m thì hệ phương trình sau có nghiệm duy nhất  \(\left\{ \begin{array}{l}x + y = 8\\\dfrac{x}{y} + \dfrac{y}{x} = m\end{array} \right.\)

Xem lời giải >>
Bài 12 :

Tìm các giá trị của tham số \(m\) để phương trình \({x^2} - 2\left( {m + 5} \right)x + {m^2} + 3m - 6 = 0\) có hai nghiệm phân biệt.

Xem lời giải >>
Bài 13 :

Tìm tất cả các giá trị thực của tham số m để phương trình \(\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0\) có ba nghiệm phân biệt.

Xem lời giải >>
Bài 14 :

Cho Parabol \((P):y=\dfrac{1}{4}{{x}^{2}}\) và đường thẳng \((d):y=mx-2m+1\). Tìm m để (P) và (d) tiếp xúc nhau.

Xem lời giải >>
Bài 15 :

Cho hàm số \(y=\dfrac{1}{2}{{x}^{2}}\) có đồ thị (P) và đường thẳng (d): \(y=3mx-2\).Tìm m để đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt.

Xem lời giải >>