Cho hệ phương trình \(\left\{ \begin{array}{l}x\sqrt 2 - y\sqrt 3 = 1\\x + y\sqrt 3 = \sqrt 2 \end{array} \right.\). Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x + 3\sqrt 3 y$
$3\sqrt 2 + 2$
$ - 3\sqrt 2 - 2$
$2\sqrt 2 - 2$
$3\sqrt 2 - 2$
Nhân hai vế của phương trình thứ hai với \(\sqrt 2\) để hệ số của x ở hai phương trình bằng nhau.
Sử dụng phương pháp cộng đại số để giải hệ phương trình.
Ta có \(\left\{ \begin{array}{l}x\sqrt 2 - y\sqrt 3 = 1\\x + y\sqrt 3 = \sqrt 2 \end{array} \right.\)
Nhân cả hai vế của phương trình thứ hai với \(\sqrt 2\) ta được phương trình: \(x\sqrt 2 + y\sqrt 6 = 2\)
Cộng từng vế của hai phương trình với nhau, ta được phương trình \(\left( {\sqrt 6 + \sqrt 3 } \right)y = 1\) hay \(y = \dfrac{1}{{\sqrt 6 + \sqrt 3 }}\)
Thay \(y = \dfrac{1}{{\sqrt 6 + \sqrt 3 }}\) vào \(x\sqrt 2 - y\sqrt 3 = 1\) ta được \(x\sqrt 2 - \sqrt 3 .\dfrac{{\sqrt 6 - \sqrt 3 }}{3} = 1\) suy ra \( x = 1\)
Vậy hệ đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {1;\dfrac{{\sqrt 6 - \sqrt 3 }}{3}} \right)\)
$ \Rightarrow x + 3\sqrt 3 y = 1 + 3\sqrt 2 - 3 = 3\sqrt 2 - 2$.
Đáp án : D
Các bài tập cùng chuyên đề
Cho hệ phương trình \(\left\{ \begin{array}{l}8x + 7y = 16\\8x - 3y = - 24\end{array} \right.\). Nghiệm của hệ phương trình là
Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x - y$
Cho hệ phương trình $\left\{ \begin{array}{l}4\sqrt x - 3\sqrt y = 4\\2\sqrt x + \sqrt y = 2\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x.y$
Cho hệ phương trình $\left\{ \begin{array}{l}\dfrac{2}{x} + y = 3\\\dfrac{1}{x} - 2y = 4\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{x}{y}$
Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5(x + 2y) - 3(x - y) = 99\\x - 3y = 7x - 4y - 17\end{array} \right.\)là
Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}x + \dfrac{y}{2} = \dfrac{{2x - 3}}{2}\\\dfrac{x}{2} + 3y = \dfrac{{25 - 9y}}{8}\end{array} \right.\)
Hệ phương trình \(\left\{ \begin{array}{l}(x - 3)(2y + 5) = (2x + 7)(y - 1)\\(4x + 1)(3y - 6) = (6x - 1)(2y + 3)\end{array} \right.\)tương đương với hệ phương trình nào dưới đây?
Kết luận đúng về nghiệm $\left( {x;y} \right)$của hệ phương trình \(\left\{ \begin{array}{l}3\sqrt {x - 1} + 2\sqrt y = 13\\2\sqrt {x - 1} - \sqrt y = 4\end{array} \right.\)
Tìm $a,b$ để hệ phương trình $\left\{ \begin{array}{l}2ax + by = - 1\\bx - ay = 5\end{array} \right.$
có nghiệm là $\left( {3; - 4} \right)$.
Nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{7}{{\sqrt x - 7}} - \dfrac{4}{{\sqrt y + 6}} = \dfrac{5}{3}\\\dfrac{5}{{\sqrt x - 7}} + \dfrac{3}{{\sqrt y + 6}} = 2\dfrac{1}{6}\end{array} \right.\) có tính chất là:
Tìm các giá trị của m để nghiệm của hệ phương trình :
\(\left\{ \begin{array}{l}\dfrac{{2x + 1}}{3} - \dfrac{{y + 1}}{4} = \dfrac{{4x - 2y + 2}}{5}\\\dfrac{{2x - 3}}{4} - \dfrac{{y - 4}}{3} = - 2x + 2y - 2\end{array} \right.\)
cũng là nghiệm của phương trình \(6mx - 5y = 2m - 66\).
Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( { - 4; - 2} \right);B\left( {2;1} \right)\).
Hai hệ phương trình \(\left\{ \begin{array}{l}2x + y = 3\\x + y = 2\end{array} \right.\) và \(\left\{ \begin{array}{l}3x - y = 2\\ax + 2y = 4\end{array} \right.\) tương đương khi và chỉ khi:
Biết rằng khi \(m\) thay đổi, giao điểm của hai đường thẳng \(y = 3x - m - 1\) và \(y = 2x + m - 1\) luôn nằm trên đường thẳng \(y = \,ax + b\) . Khi đó tổng \(S = a + b\) là