Cho \(a > b\) và \(c > 0\), chọn kết luận đúng.
\(ac > bc\)
\(ac > 0\)
\(ac \le bc\)
\(bc > ac\)
Sử dụng tính chất cơ bản của bất đẳng thức.
+ Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương, ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương, ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Từ đó với \(a > b\) và \(c > 0\) thì \(ac > bc\) nên A đúng.
Đáp án : A
Các bài tập cùng chuyên đề
Hãy chọn câu sai:
Hãy chọn câu đúng. Nếu \(a > b\) thì:
Hãy chọn câu sai. Nếu \(a < b\) thì:
Cho \(a + 1 \le b + 2\). So sánh $2$ số \(2a + 2\) và \(2b + 4\) nào dưới đây là đúng?
Cho \( - 2x + 3 < - 2y + 3\). So sánh $x$ và $y$ . Đáp án nào sau đây là đúng?
Cho \(a > b > 0.\) So sánh \({a^2}\) và \(ab\); \({a^3}\) và \({b^3}\) .
Cho $a,b$ bất kì. Chọn câu đúng.
Cho \( - 2018a < - 2018b\). Khi đó
Với mọi \(a,b,c\) . Khẳng định nào sau đây là đúng?
Cho \(x + y > 1.\) Chọn khẳng định đúng
Bất đẳng thức nào sau đây đúng với mọi \(a > 0,b > 0:\)
Cho \(a \ge b > 0\). Khẳng định nào đúng?
Cho \(x > 0;y > 0\). Tìm khẳng định đúng trong các khẳng định sau?
\(\left( 1 \right)\;\;\;(x + y)\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) \ge 4\)
\(\left( 2 \right)\;\;\;\;{x^2} + {y^3} \le 0\)
\(\left( 3 \right)\;\;\;(x + y)\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) < 4\)
So sánh \(m\) và \({m^2}\) với \(0 < m < 1\) .