Đề bài

Cho biết \(a < b\). Trong các khẳng định sau, số khẳng định đúng là:

(I) \(a - 1 < b - 1\)                     (II) \(a - 1 < b\)                    (III) \(a + 2 < b + 1\)

  • A.

    \(1\)

  • B.

    \(2\)

  • C.

    \(3\)

  • D.

    \(0\)

Phương pháp giải

Sử dụng tính chất liên hệ giữa thứ tự và phép cộng:

Nếu cộng cả hai vế với cùng một số thì bất đẳng thức không đổi chiều.

Lời giải của GV Loigiaihay.com

+ Vì \(a < b\), cộng hai vế của bất đẳng thức với \( - 1\) ta được: \(a - 1 < b - 1 \Rightarrow \) (I) đúng.

+ Vì \(a - 1 < b - 1\,\left( {cmt} \right)\) mà \(b - 1 < b\) nên \(a - 1 < b\) \( \Rightarrow \) (II) đúng

+ Vì \(a < b\), cộng hai vế của bất đẳng thức với \(1\) ta được: \(a + 1 < b + 1\) mà \(a + 1 < a + 2\) nên ta chưa đủ dữ kiện để nói rằng \(a + 2 < b + 1 \Rightarrow \) (III) sai.

Do đó có \(2\) khẳng định đúng.

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho \(m\) bất kỳ, chọn câu đúng.

Xem lời giải >>
Bài 2 :

Cho biết \(a < b\). Trong các khẳng định sau, số khẳng định sai là:

(I) \(a - 1 < b - 1\)         

(II) \(a - 1 < b\)                      

(III) \(a + 2 < b + 1\)

Xem lời giải >>
Bài 3 :

Cho \(a\) bất kỳ, chọn câu sai.

Xem lời giải >>
Bài 4 :

Cho \(x - 3 \le y - 3,\) so sánh $x$  và $y$. Chọn đáp án đúng nhất.

Xem lời giải >>
Bài 5 :

Cho \(a > b\) khi đó

Xem lời giải >>
Bài 6 :

So sánh $m$  và $n$ biết $m-\dfrac{1}{2} = n$

Xem lời giải >>
Bài 7 :

Cho \(a + 8 < b\). So sánh \(a - 7\) và  \(b - 15\)

Xem lời giải >>
Bài 8 :

Cho biết \(a - 1 = b + 2 = c - 3\) . Hãy sắp xếp các số \(a,b,c\) theo thứ tự tăng dần.

Xem lời giải >>
Bài 9 :

Với \(a,b,c\) bất kỳ. Hãy so sánh \(3\left( {{a^2} + {b^2} + {c^2}} \right)\) và \({\left( {a + b + c} \right)^2}\)

Xem lời giải >>
Bài 10 :

Với \(a,b\) bất kỳ. Chọn khẳng định sai.

Xem lời giải >>
Bài 11 :

Với \(x,y\) bất kỳ. Chọn khẳng định đúng?

Xem lời giải >>