Cặp số \(\left( { - 2; - 3} \right)\) là nghiệm của hệ phương trình nào sau đây?
\(\left\{ \begin{array}{l}x - y = 3\\2x + y = 4\end{array} \right.\)
$\left\{ \begin{array}{l}2x - y = - 1\\x - 3y = 8\end{array} \right.$
$\left\{ \begin{array}{l}2x - y = - 1\\x - 3y = 7\end{array} \right.$
$\left\{ \begin{array}{l}4x - 2y = 0\\x - 3y = 5\end{array} \right.$
Cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ.
+) Thay $x = - 2;y = - 3$ vào hệ \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 4\end{array} \right.\) ta được $\left\{ \begin{array}{l} - 2 - \left( { - 3} \right) = 1 \ne 3\\2.\left( { - 2} \right) - 3 = - 7 \ne 4\end{array} \right.$ nên loại A.
+) Thay $x = - 2;y = - 3$ vào hệ $\left\{ \begin{array}{l}2x - y = - 1\\x - 3y = 8\end{array} \right.$ ta được $\left\{ \begin{array}{l}2.\left( { - 2} \right) - \left( { - 3} \right) = - 1\\ - 2 - 3.\left( { - 3} \right) = 7 \ne 8\end{array} \right.$ nên loại B.
+) Thay $x = - 2;y = - 3$ vào hệ $\left\{ \begin{array}{l}4x - 2y = 0\\x - 3y = 5\end{array} \right.$ ta được $\left\{ \begin{array}{l}4.\left( { - 2} \right) - 2.\left( { - 3} \right) = - 2 \ne 0\\ - 2 - 3.\left( { - 3} \right) = 7 \ne 5\end{array} \right.$ nên loại D.
+) Thay $x = - 2;y = - 3$ vào hệ $\left\{ \begin{array}{l}2x - y = - 1\\x - 3y = 7\end{array} \right.$ ta được $\left\{ \begin{array}{l}2.\left( { - 2} \right) - \left( { - 3} \right) = - 1\\ - 2 - 3.\left( { - 3} \right) = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 = - 1\\7 = 7\end{array} \right.$ nên chọn C.
Đáp án : C
Các bài tập cùng chuyên đề
Hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) có nghiệm duy nhất khi
Hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) (các hệ số khác $0$) vô nghiệm khi
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l} - 2x + y = - 3\\3x - 2y = 7\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}x + y = - 1\\mx + y = 2m\end{array} \right.\) vô nghiệm.
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l}\sqrt 2 x - 2y = 3\\3\sqrt 2 x - 6y = 5\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}mx - 2y = 1\\2x - my = 2{m^2}\end{array} \right.\) có nghiệm duy nhất
Hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9\end{array} \right.\) nhận cặp số nào sau đây là nghiệm
Cho hệ phương trình \(\left\{ \begin{array}{l} - mx + y = - 2m\\x + {m^2}y = 9\end{array} \right..\) Tìm các giá trị của tham số \(m\) để hệ phương trình nhận cặp \(\left( {1;2} \right)\) làm nghiệm.
Bằng cách tìm giao điểm của hai đường thẳng $d: - 2x + y = 3$ và $d':x + y = 5$ ta tìm được nghiệm của hệ phương trình $\left\{ \begin{array}{l} - 2x + y = 3\\x + y = 5\end{array} \right.$ là $\left( {{x_0};{y_0}} \right)$. Tính ${y_0} - {x_0}$.
Theo số liệu của Bộ Công Thương, 8 tháng đầu năm 2020 Việt Nam xuất khẩu được khoảng \(\frac{9}{2}\) triệu tấn gạo với tổng giá trị 251 triệu USD. So sánh thấy, khối lượng này bằng \(\frac{{983}}{{1000}}\) khối lượng cùng kì 8 tháng đầu năm 2019 và giá trị tính theo USD bằng \(\frac{{1104}}{{1000}}\) giá trị cùng kì 8 tháng đầu năm 2019. Tìm phân số biểu thị chênh lệch giữa khối lượng gạo xuất khẩu trong 8 tháng đầu năm 2020 so với cùng kì năm 2019 và số chênh lệch giữa hai giá trị tính theo USD tương ứng.