Hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9\end{array} \right.\) nhận cặp số nào sau đây là nghiệm
$\left( { - 21;15} \right)$
$\left( {21; - 15} \right)$
$\left( {1;1} \right)$
$\left( {1; - 1} \right)$
Cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ.
Thay lần lượt các cặp số $\left( {21; - 15} \right)$;$\left( {1;1} \right)$;$\left( {1; - 1} \right)$ và $\left( { - 21;15} \right)$ vào hệ phương trình ta được
+) Với cặp số $\left( {21; - 15} \right)$ thì ta có \(\left\{ \begin{array}{l}2.21 + 3.15 = 3\\ - 4.21 + 5.15 = 9\end{array} \right.\) hay \( \left\{ \begin{array}{l}87 = 3\\ - 9 = 9\end{array} \right.\) (vô lý) nên loại B.
+) Với cặp số $\left( {1;1} \right)$ thì ta có \(\left\{ \begin{array}{l}2.1 + 3.1 = 3\\ - 4.1 - 5.1 = 9\end{array} \right. \) hay \( \left\{ \begin{array}{l}5 = 3\\ - 9 = 9\end{array} \right.\) (vô lý) nên loại C.
+) Với cặp số $\left( {1; - 1} \right)$ thì ta có \(\left\{ \begin{array}{l}2.1 + 3.\left( { - 1} \right) = 3\\ - 4.1 - 5.\left( { - 1} \right) = 9\end{array} \right. \) hay \( \left\{ \begin{array}{l} - 1 = 3\\1 = 9\end{array} \right.\) (vô lý) nên loại D.
+) Với cặp số $\left( { - 21;15} \right)$ thì ta có \(\left\{ \begin{array}{l}2.\left( { - 21} \right) + 3.15 = 3\\ - 4.\left( { - 21} \right) - 5.15 = 9\end{array} \right. \) hay \( \left\{ \begin{array}{l}3 = 3\\9 = 9\end{array} \right.\) (luôn đúng) nên chọn A.
Đáp án : A
Các bài tập cùng chuyên đề
Hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) có nghiệm duy nhất khi
Hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) (các hệ số khác $0$) vô nghiệm khi
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l} - 2x + y = - 3\\3x - 2y = 7\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}x + y = - 1\\mx + y = 2m\end{array} \right.\) vô nghiệm.
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l}\sqrt 2 x - 2y = 3\\3\sqrt 2 x - 6y = 5\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}mx - 2y = 1\\2x - my = 2{m^2}\end{array} \right.\) có nghiệm duy nhất
Cho hệ phương trình \(\left\{ \begin{array}{l} - mx + y = - 2m\\x + {m^2}y = 9\end{array} \right..\) Tìm các giá trị của tham số \(m\) để hệ phương trình nhận cặp \(\left( {1;2} \right)\) làm nghiệm.
Cặp số \(\left( { - 2; - 3} \right)\) là nghiệm của hệ phương trình nào sau đây?
Cho hệ phương trình: \(\left\{ \begin{array}{l}3mx + y = - 2m\\ - 3x - my = - 1 + 3m\end{array} \right..\) Xác định các giá trị của tham số \(m\) để hệ phương trình vô số nghiệm.
Bằng cách tìm giao điểm của hai đường thẳng $d: - 2x + y = 3$ và $d':x + y = 5$ ta tìm được nghiệm của hệ phương trình $\left\{ \begin{array}{l} - 2x + y = 3\\x + y = 5\end{array} \right.$ là $\left( {{x_0};{y_0}} \right)$. Tính ${y_0} - {x_0}$.