Đề bài

Không giải hệ phương trình , dự đoán số nghiệm của  hệ \(\left\{ \begin{array}{l}\sqrt 2 x - 2y = 3\\3\sqrt 2 x - 6y = 5\end{array} \right.\)

  • A.

    Vô số nghiệm

  • B.

    Vô nghiệm

  • C.

    Có nghiệm duy nhất

  • D.

    Có hai nghiệm phân biệt

Phương pháp giải

Xét hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) (các hệ số khác $0$)

- Hệ phương trình có nghiệm duy nhất \( \Leftrightarrow \dfrac{a}{{a'}} \ne \dfrac{b}{{b'}}\)

- Hệ phương trình vô nghiệm \( \Leftrightarrow \dfrac{a}{{a'}} = \dfrac{b}{{b'}} \ne \dfrac{c}{{c'}}\)

- Hệ phương trình có vô số nghiệm \( \Leftrightarrow \dfrac{a}{{a'}} = \dfrac{b}{{b'}} = \dfrac{c}{{c'}}\)

Lời giải của GV Loigiaihay.com

Xét hệ phương trình \(\left\{ \begin{array}{l}\sqrt 2 x - 2y = 3\\3\sqrt 2 x - 6y = 5\end{array} \right.\)  có $\dfrac{{\sqrt 2 }}{{3\sqrt 2 }} = \dfrac{{ - 2}}{{ - 6}} \ne \dfrac{3}{5} \Leftrightarrow \dfrac{1}{3} = \dfrac{1}{3} \ne \dfrac{3}{5}$ nên hệ phương trình vô nghiệm.

Đáp án : B

Các bài tập cùng chuyên đề