Cho biểu thức $C = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}$
với $x \ge 0;x \ne 4;x \ne 9$.
Tìm $x$ để $C < 1$
$0 \le x < 9$
$0 \le x < 9;x \ne 4$
$4 < x < 9$
$0 < x < 4$
Đáp án : B
- Chuyển vế, quy đồng các phân thức sau đó xét các trường hợp xảy ra của bất phương trình
-So sánh điều kiện rồi kết luận nghiệm.
Theo câu trước ta có $C = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$ với $x \ge 0;x \ne 4;x \ne 9$
Để $C < 1$
$\dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} < 1 \\ \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} - \dfrac{{\sqrt x - 3}}{{\sqrt x - 3}} < 0 \\ \dfrac{4}{{\sqrt x - 3}} < 0$
Mà $4 > 0$ nên $\sqrt x - 3 < 0 $ hay $\sqrt x < 3 \Rightarrow x < 9$
Kết hợp điều kiện $x \ge 0;x \ne 4;x \ne 9$ suy ra $0 \le x < 9;x \ne 4$.

Rút gọn biểu thức $C$ ta được
$C = \dfrac{{\sqrt x - 1}}{{\sqrt x - 3}}$
$C = \dfrac{{\sqrt x - 1}}{{\sqrt x + 3}}$
$C = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$
$C = \dfrac{{\sqrt x + 1}}{{\sqrt x + 3}}$
Đáp án : C
-Tìm mẫu thức chung bằng cách phân tích đa thức thành nhân tử
-Quy đồng mẫu thức các phân thức.
-Cộng trừ các phân thức đã quy đồng và rút gọn.
Ta có $x - 5\sqrt x + 6 = x - 2\sqrt x - 3\sqrt x + 6 = \sqrt x \left( {\sqrt x - 2} \right) - 3\left( {\sqrt x - 2} \right) = \left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)$ nên
$C = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}$$ = \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}$
$ = \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}$$ = \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}$
$ = \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{x - 2\sqrt x + \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x \left( {\sqrt x - 2} \right) + \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$
Vậy $C = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$với $x \ge 0;x \ne 4;x \ne 9$

Các bài tập cùng chuyên đề
Bài 1 :
Cho biểu thức \(P = \dfrac{{2x}}{{\sqrt x + 1}}\). Giá trị của $P$ khi $x = 9$ là
$\dfrac{9}{2}$
$\dfrac{9}{4}$
$9$
$18$
Bài 2 :
Cho biểu thức \(P = \dfrac{x}{{\sqrt x + 1}}\). Giá trị của $P$ khi $x = \dfrac{2}{{2 - \sqrt 3 }}$ là
$4$
$2$
$3$
$1$
Bài 3 :
Cho biểu thức \(P = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}}\).
Giá trị của $P$ khi $x = 3 + 2\sqrt 2 $ là:
$4 + 3\sqrt 2 $
$4 - 3\sqrt 2 $
$3$
$3\sqrt 2 $
Bài 4 :
Cho biểu thức \(P = \dfrac{{x + 2\sqrt x + 2}}{{\sqrt x }}\)với $x > 0$. So sánh $P$ với $4$.
$P > 4$
$P < 4$
$P = 4$
$P \le 4$
Bài 5 :
Cho biểu thức \(P = \dfrac{{3\sqrt x - 1}}{{\sqrt x + 1}}\)với $x \ge 0$. Tìm $x$ biết $P = \sqrt x $ .
$1$
$2$
$3$
$4$
Bài 6 :
Giá trị của biểu thức \(2\sqrt {\dfrac{{16a}}{3}} - 3\sqrt {\dfrac{a}{{27}}} - 6\sqrt {\dfrac{{4a}}{{75}}} \) là
$\dfrac{{23\sqrt {3a} }}{{15}}$
$\dfrac{{\sqrt {3a} }}{{15}}$
$\dfrac{{23\sqrt a }}{{15}}$
$\dfrac{{3\sqrt {3a} }}{{15}}$
Bài 7 :
Rút gọn biểu thức $E = \dfrac{{a - b}}{{2\sqrt a }}\sqrt {\dfrac{{ab}}{{{{(a - b)}^2}}}} $ với $0 < a < b$ ta được
$\dfrac{{\sqrt a }}{2}$
$\dfrac{{\sqrt b }}{2}$
$\dfrac{{ - \sqrt b }}{2}$
$a\sqrt b $
Bài 8 :
Rút gọn biểu thức $4{a^4}{b^2}.\sqrt {\dfrac{9}{{{a^8}{b^4}}}} $ với $ab \ne 0$ ta được
$\dfrac{{{a^2}}}{b}$
$12$
$6$
$36$
Bài 9 :
Cho biểu thức $A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}$ với $x \ge 0;x \ne 4$
Bài 10 :
Cho biểu thức
$B = \left( {\dfrac{{\sqrt x - 2}}{{x - 1}} - \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}$ với $x \ge 0;x \ne 1$
Bài 11 :
Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x - 1}}\) với \(x \ge 0;x \ne 1\). Giá trị của \(P\) khi \(x = 4\) là:
\(4\)
\(2\)
\(-2\)
\(\dfrac{2}{3}\)
Bài 12 :
Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x - 1}}\) với \(x \ge 0;x \ne 1\). Giá trị của \(P\) khi \(x = \dfrac{8}{{3 - \sqrt 5 }}\) là:
\(5 + \sqrt 5 \)
\(5\)
\(\dfrac{{5 + \sqrt 5 }}{5}\)
\(\sqrt 5 \)
Bài 13 :
Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x - 2}}\) với \(x \ge 0;x \ne 4\) . Giá trị của \(P\) khi \(x\) thỏa mãn phương trình \({x^2} - 5x + 4 = 0\).
\( - \dfrac{1}{2}\)
\(\sqrt 2 \)
\( - 1\)
Không tồn tại giá trị \(P.\)
Bài 14 :
Cho biểu thức \(A = \dfrac{{2\sqrt x + 1}}{{\sqrt x + 1}}\)với \(x \ge 0\). So sánh \(A\) với \(2\).
\(A > 2\)
\(A < 2\)
\(A = 2\)
\(A \ge 2\)
Bài 15 :
Cho biểu thức \(B = \dfrac{{\sqrt x + 3}}{{\sqrt x + 2}}\)với \(x \ge 0\). So sánh \(A\) với \(1\).
\(B > 1\)
\(B < 1\)
\(B = 1\)
\(B \le 1\)
Bài 16 :
Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}}\) với \(x \ge 0;x \ne 4\). Tìm các giá trị của \(x\) biết \(A = \dfrac{{\sqrt x - 1}}{2}\) .
\(x = 0;x = 5\)
\(x = 0\)
\(x = 0;x = 25\)
\(x = 5;x = 1\)
Bài 17 :
Rút gọn biểu thức \(5\sqrt a + 6\sqrt {\dfrac{a}{4}} - a\sqrt {\dfrac{4}{a}} + 5\sqrt {\dfrac{{4a}}{{25}}} \) với \(a > 0,\) ta được kết quả là:
\(12\sqrt a \)
\(8\sqrt a \)
\(6\sqrt a \)
\(10\sqrt a \)
Bài 18 :
Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{4 - x}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \dfrac{2}{{\sqrt x }}} \right)\) với \(x \ge 0;x \ne 4;x \ne 9\)
Bài 19 :
Cho biểu thức \(C = \left( {\dfrac{{\sqrt x }}{{\sqrt x - 1}} + \dfrac{2}{{x - \sqrt x }}} \right):\dfrac{1}{{\sqrt x - 1}}\) với \(x > 0;x \ne 1\)
Bài 20 :
Cho biểu thức \(P = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {1 - \dfrac{{x + 4}}{{x + \sqrt x + 1}}} \right)\)
Bài 21 :
Cho \(A = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 2}}\) với \(x \ge 0.\) Có bao nhiêu giá trị của \(x\) để \(A\) có giá trị nguyên.
\(2\)
\(1\)
\(0\)
\(3\)
Bài 22 :
Rút gọn biểu thức \(D = \dfrac{{2\left( {a + b} \right)}}{{\sqrt b }}\sqrt {\dfrac{b}{{{a^2} + 2ab + {b^2}}}} \) với \(a,b > 0\) ta được:
\(a + b\)
\(2\)
\(\dfrac{{\sqrt b }}{2}\)
\(2\sqrt b \)
Bài 23 :
Rút gọn biểu thức \(\dfrac{{{a^2}}}{{11}}.\sqrt {\dfrac{{121}}{{{a^4}{b^{10}}}}} \) với \(ab \ne 0\) ta được:
\(\dfrac{1}{{\left| {{b^5}} \right|}}\)
\(\dfrac{1}{{{b^5}}}\)
\({b^5}\)
\(\dfrac{{11}}{{{b^5}}}\)
Bài 24 :
Với \(y < 0 < x\), so sánh \(A = 2\left( {x - y} \right)x{y^3}.\dfrac{{\sqrt {{x^2}{y^3}} }}{{\sqrt {{x^4}{y^5}{{\left( {x - y} \right)}^2}} }}\) và \(0.\)
Đáp án khác
Bài 25 :
Với \(a,b > 0\), biểu thức \(3a{b^2}.\sqrt {\dfrac{{{b^2}}}{{{a^4}}}} \) bằng:
\(\dfrac{{ - 3{b^2}}}{a}\)
\(\dfrac{{3{b^2}}}{a}\)
\(\dfrac{{3{b^3}}}{a}\)
\(\dfrac{{ - 3{b^3}}}{a}\)
Bài 26 :
Cho \(Q = \dfrac{{x + \sqrt x + 1}}{{\sqrt x }}\). Tìm \(x\) để \(Q = 3\)
Bài 27 :
Rút gọn rồi tính giá trị của biểu thức \(Q = \dfrac{{2x - 3\sqrt x - 2}}{{\sqrt x - 2}}\) tại \(x = 2020 - 2\sqrt {2019} \)
Bài 28 :
Cho các biểu thức : \(P = \left( {\dfrac{{3\sqrt x }}{{x\sqrt x + 1}} - \dfrac{{\sqrt x }}{{x - \sqrt x + 1}} + \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x + 3}}{{x - \sqrt x + 1}}\,\,\,\left( {x \ge 0} \right)\)
Rút gọn biểu thức \(P.\) Tìm các giá trị của \(x\) để \(P \ge \dfrac{1}{5}\).
\(P = \dfrac{1}{\sqrt{x} + 3}\,\,;\,\,0 \le x \le 4\)
\(P = \dfrac{1}{\sqrt{x} + 3}\,\,;\,\,0 \le x \le 2\)
\(P = \dfrac{1}{\sqrt{x} + 1}\,\,;\,\,0 \le x \le 2\)
\(P = \dfrac{1}{\sqrt{x} + 1}\,\,;\,\,0 \le x \le 4\)
Bài 29 :
Cho căn thức \(\sqrt {{x^2} - 4x + 4} .\)
a) Hãy chứng tỏ rằng căn thức xác định với mọi giá trị của x.
b) Rút gọn căn thức đã cho với \(x \ge 2.\)
c) Chứng tỏ rằng với mọi \(x \ge 2,\) biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.
Bài 30 :
Rút gọn các biểu thức sau:
a) \(2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} ;\)
b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }};\)
c) \(\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}.\)