Đề bài

Giá trị của biểu thức  \(2\sqrt {\dfrac{{16a}}{3}}  - 3\sqrt {\dfrac{a}{{27}}}  - 6\sqrt {\dfrac{{4a}}{{75}}} \) là

  • A.

    $\dfrac{{23\sqrt {3a} }}{{15}}$

  • B.

    $\dfrac{{\sqrt {3a} }}{{15}}$

  • C.

    $\dfrac{{23\sqrt a }}{{15}}$

  • D.

    $\dfrac{{3\sqrt {3a} }}{{15}}$

Phương pháp giải

- Sử dụng công thức đưa thừa số ra ngoài dấu căn để xuất hiện nhân tử chung từ đó thực hiện phép tính

Công thức đưa thừa số ra ngoài dấu căn:

Với hai biểu thức $A,B$ mà $B \ge 0$, ta có $\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,{\rm{khi}}\,\,A \ge 0\\ - A\sqrt B \,{\rm{khi}}\,A < 0\end{array} \right.$

- Sử dụng công thức trục căn thức $\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt {AB} }}{B},\,\left( {A \ge 0;\,B > 0} \right)$.

Lời giải của GV Loigiaihay.com

Ta có \(2\sqrt {\dfrac{{16a}}{3}}  - 3\sqrt {\dfrac{a}{{27}}}  - 6\sqrt {\dfrac{{4a}}{{75}}}  = 2\sqrt {{4^2}.\dfrac{a}{3}}  - 3\sqrt {\dfrac{1}{9}.\dfrac{a}{3}}  - 6\sqrt {\dfrac{4}{{25}}.\dfrac{a}{3}} \)$ = 2.4\sqrt {\dfrac{a}{3}}  - 3.\dfrac{1}{3}\sqrt {\dfrac{a}{3}}  - 6.\dfrac{2}{5}.\sqrt {\dfrac{a}{3}} $

$ = \sqrt {\dfrac{a}{3}} .\left( {8 - 1 - \dfrac{{12}}{5}} \right) = \dfrac{{23}}{5}\sqrt {\dfrac{a}{3}}  = \dfrac{{23}}{5}.\dfrac{{\sqrt {3a} }}{3} = \dfrac{{23\sqrt {3a} }}{{15}}$

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho các biểu thức $A,B$ mà $A.B \ge 0;B > 0$, khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 2 :

Cho các biểu thức với $A < 0$ và $B \ge 0$ , khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 3 :

Đưa thừa số $\sqrt {81{{\left( {2 - y} \right)}^4}} $ ra ngoài  dấu căn ta được ?

Xem lời giải >>
Bài 4 :

Đưa thừa số $5y\sqrt y $ ($y \ge 0$) vào trong dấu căn ta được

Xem lời giải >>
Bài 5 :

Đưa thừa số $x\sqrt {\dfrac{{ - 35}}{x}} $ ($x < 0$) vào trong dấu căn ta được

Xem lời giải >>
Bài 6 :

So sánh hai  số $5\sqrt 3 $ và $4\sqrt 5 $

Xem lời giải >>
Bài 7 :

Khử mẫu biểu thức sau $ xy\sqrt {\dfrac{4}{{x^2y^2}}} $ với $x > 0;y > 0$ ta được

Xem lời giải >>
Bài 8 :

Khử mẫu biểu thức sau $ - xy\sqrt {\dfrac{3}{{xy}}} $ với $x < 0;y < 0$ ta được

Xem lời giải >>
Bài 9 :

Sau  khi rút gọn biểu thức $\dfrac{1}{{5 + 3\sqrt 2 }} + \dfrac{1}{{5 - 3\sqrt 2 }}$ ta được phân số tối giản $\dfrac{a}{b},\left( {a,b \in \mathbb{Z}} \right)$. Khi đó $2a$ có giá trị là:

Xem lời giải >>
Bài 10 :

Rút gọn biểu thức  \(\sqrt {32x}  + \sqrt {50x}  - 2\sqrt {8x}  + \sqrt {18x} \) với $x \ge 0$ ta được kết quả là

Xem lời giải >>
Bài 11 :

Rút gọn biểu thức  \(5\sqrt a  - 4b\sqrt {25{a^3}}  + 5a\sqrt {16a{b^2}}  - \sqrt {9a} \) với $a \ge 0;b \ge 0$ ta được kết quả là

Xem lời giải >>
Bài 12 :

Trục căn thức ở mẫu  biểu thức  \(\dfrac{{2a}}{{2 - \sqrt a }}\)với $a \ge 0;a \ne 4$ ta được

Xem lời giải >>
Bài 13 :

Trục căn thức ở mẫu  biểu thức  \(\dfrac{6}{{\sqrt x  + \sqrt {2y} }}\)với $x \ge 0;y \ge 0$ ta được

Xem lời giải >>
Bài 14 :

Tính giá trị biểu thức\(\left( {\dfrac{{\sqrt {14}  - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15}  - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7  - \sqrt 5 }}.\)

Xem lời giải >>
Bài 15 :

Giá trị biểu thức $\dfrac{3}{2}\sqrt 6  + 2\sqrt {\dfrac{2}{3}}  - 4\sqrt {\dfrac{3}{2}} $ là giá trị nào sau đây?

Xem lời giải >>
Bài 16 :

Cho ba biểu thức $P = x\sqrt y  + y\sqrt x ;Q = x\sqrt x  + y\sqrt y ;$

$R = x - y$. Biểu thức nào bằng với biểu thức $\left( {\sqrt x  - \sqrt y } \right)\left( {\sqrt x  + \sqrt y } \right)$ với $x,y$ không âm.

Xem lời giải >>
Bài 17 :

Số nghiệm của phương trình \(\sqrt {4{x^2} - 9}  = 2\sqrt {2x + 3} \) là

Xem lời giải >>
Bài 18 :

Phương trình \(\dfrac{2}{3}\sqrt {9x - 9}  - \dfrac{1}{4}\sqrt {16x - 16}  + 27\sqrt {\dfrac{{x - 1}}{{81}}}  = 4\) có mấy nghiệm?

Xem lời giải >>
Bài 19 :

Giá trị của biểu thức \(\sqrt {\dfrac{3}{{20}}}  + \sqrt {\dfrac{1}{{60}}}  - 2\sqrt {\dfrac{1}{{15}}} \) là

Xem lời giải >>
Bài 20 :

Rút gọn biểu thức \(\dfrac{a}{{\sqrt 5  + 1}} + \dfrac{a}{{\sqrt 5  - 2}} - \dfrac{a}{{3 - \sqrt 5 }} - \sqrt 5 a\) ta được

Xem lời giải >>