Đề bài

Rút gọn biểu thức  \(\sqrt {32x}  + \sqrt {50x}  - 2\sqrt {8x}  + \sqrt {18x} \) với $x \ge 0$ ta được kết quả là

  • A.

    $8\sqrt {2x} $

  • B.

    $10\sqrt 2 x$

  • C.

    $20\sqrt x $

  • D.

    $2\sqrt {10x} $

Phương pháp giải

+ Đưa thừa số ra ngoài dấu căn để xuất hiện nhân tử chung từ đó thực hiện phép tính

Công thức đưa thừa số ra ngoài dấu căn:

Với hai biểu thức $A,B$ mà $B \ge 0$, ta có $\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,{\rm{khi}}\,\,A \ge 0\\ - A\sqrt B \,{\rm{khi}}\,A < 0\end{array} \right.$

Lời giải của GV Loigiaihay.com

Ta có \(\sqrt {32x}  + \sqrt {50x}  - 2\sqrt {8x}  + \sqrt {18x} \)$ = \sqrt {16.2x}  + \sqrt {25.2x}  - 2\sqrt {4.2x}  + \sqrt {9.2x}  = \sqrt {{4^2}.2x}  + \sqrt {{5^2}.2x}  - 2\sqrt {{2^2}.2x}  + \sqrt {{3^2}.2x} $

$ = 4\sqrt {2x}  + 5\sqrt {2x}  - 4\sqrt {2x}  + 3\sqrt {2x}  = \sqrt {2x} \left( {4 + 5 - 4 + 3} \right) = 8\sqrt {2x} $

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho các biểu thức $A,B$ mà $A.B \ge 0;B > 0$, khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 2 :

Cho các biểu thức với $A < 0$ và $B \ge 0$ , khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 3 :

Đưa thừa số $\sqrt {81{{\left( {2 - y} \right)}^4}} $ ra ngoài  dấu căn ta được ?

Xem lời giải >>
Bài 4 :

Đưa thừa số $5y\sqrt y $ ($y \ge 0$) vào trong dấu căn ta được

Xem lời giải >>
Bài 5 :

Đưa thừa số $x\sqrt {\dfrac{{ - 35}}{x}} $ ($x < 0$) vào trong dấu căn ta được

Xem lời giải >>
Bài 6 :

So sánh hai  số $5\sqrt 3 $ và $4\sqrt 5 $

Xem lời giải >>
Bài 7 :

Khử mẫu biểu thức sau $ xy\sqrt {\dfrac{4}{{x^2y^2}}} $ với $x > 0;y > 0$ ta được

Xem lời giải >>
Bài 8 :

Khử mẫu biểu thức sau $ - xy\sqrt {\dfrac{3}{{xy}}} $ với $x < 0;y < 0$ ta được

Xem lời giải >>
Bài 9 :

Sau  khi rút gọn biểu thức $\dfrac{1}{{5 + 3\sqrt 2 }} + \dfrac{1}{{5 - 3\sqrt 2 }}$ ta được phân số tối giản $\dfrac{a}{b},\left( {a,b \in \mathbb{Z}} \right)$. Khi đó $2a$ có giá trị là:

Xem lời giải >>
Bài 10 :

Rút gọn biểu thức  \(5\sqrt a  - 4b\sqrt {25{a^3}}  + 5a\sqrt {16a{b^2}}  - \sqrt {9a} \) với $a \ge 0;b \ge 0$ ta được kết quả là

Xem lời giải >>
Bài 11 :

Giá trị của biểu thức  \(2\sqrt {\dfrac{{16a}}{3}}  - 3\sqrt {\dfrac{a}{{27}}}  - 6\sqrt {\dfrac{{4a}}{{75}}} \) là

Xem lời giải >>
Bài 12 :

Trục căn thức ở mẫu  biểu thức  \(\dfrac{{2a}}{{2 - \sqrt a }}\)với $a \ge 0;a \ne 4$ ta được

Xem lời giải >>
Bài 13 :

Trục căn thức ở mẫu  biểu thức  \(\dfrac{6}{{\sqrt x  + \sqrt {2y} }}\)với $x \ge 0;y \ge 0$ ta được

Xem lời giải >>
Bài 14 :

Tính giá trị biểu thức\(\left( {\dfrac{{\sqrt {14}  - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15}  - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7  - \sqrt 5 }}.\)

Xem lời giải >>
Bài 15 :

Giá trị biểu thức $\dfrac{3}{2}\sqrt 6  + 2\sqrt {\dfrac{2}{3}}  - 4\sqrt {\dfrac{3}{2}} $ là giá trị nào sau đây?

Xem lời giải >>
Bài 16 :

Cho ba biểu thức $P = x\sqrt y  + y\sqrt x ;Q = x\sqrt x  + y\sqrt y ;$

$R = x - y$. Biểu thức nào bằng với biểu thức $\left( {\sqrt x  - \sqrt y } \right)\left( {\sqrt x  + \sqrt y } \right)$ với $x,y$ không âm.

Xem lời giải >>
Bài 17 :

Số nghiệm của phương trình \(\sqrt {4{x^2} - 9}  = 2\sqrt {2x + 3} \) là

Xem lời giải >>
Bài 18 :

Phương trình \(\dfrac{2}{3}\sqrt {9x - 9}  - \dfrac{1}{4}\sqrt {16x - 16}  + 27\sqrt {\dfrac{{x - 1}}{{81}}}  = 4\) có mấy nghiệm?

Xem lời giải >>
Bài 19 :

Giá trị của biểu thức \(\sqrt {\dfrac{3}{{20}}}  + \sqrt {\dfrac{1}{{60}}}  - 2\sqrt {\dfrac{1}{{15}}} \) là

Xem lời giải >>
Bài 20 :

Rút gọn biểu thức \(\dfrac{a}{{\sqrt 5  + 1}} + \dfrac{a}{{\sqrt 5  - 2}} - \dfrac{a}{{3 - \sqrt 5 }} - \sqrt 5 a\) ta được

Xem lời giải >>