Rút gọn biểu thức $B = \sqrt[3]{{17\sqrt 5 + 38}} - \sqrt[3]{{17\sqrt 5 - 38}}$ ta được
$4$
$\sqrt 5 $
$2\sqrt 5 $
$2$
- Đưa biểu thức dưới dấu căn về hằng đẳng thức ${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$;${\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}$.
- Sử dụng định công thức $\sqrt[3]{{{a^3}}} = a$ sau đó cộng trừ các số hạng
Ta có $B = \sqrt[3]{{17\sqrt 5 + 38}} - \sqrt[3]{{17\sqrt 5 - 38}}$
$ = \sqrt[3]{{{2^3} + {{3.2}^2}.\sqrt 5 + 3.2.{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 5 } \right)}^3}}} - \sqrt[3]{{{{\left( {\sqrt 5 } \right)}^3} - 3.{{\left( {\sqrt 5 } \right)}^2}.2 + 3.\sqrt 5 {{.2}^2} - {2^3}}}$.
$ = \sqrt[3]{{{{\left( {2 + \sqrt 5 } \right)}^3}}} - \sqrt[3]{{{{\left( {\sqrt 5 - 2} \right)}^3}}} = \sqrt 5 + 2 - \sqrt 5 + 2 = 4 $
Đáp án : A
Các bài tập cùng chuyên đề
Khẳng định nào sau đây là đúng?
Khẳng định nào sau đây là đúng?
Khẳng định nào sau đây là sai?
Chọn khẳng định đúng
Chọn khẳng định đúng, với $a \ne 0$ ta có
Rút gọn biểu thức \(\sqrt[3]{{\dfrac{{ - 27}}{{512}}{a^3}}} + \sqrt[3]{{64{a^3}}} - \dfrac{1}{3}\sqrt[3]{{1000{a^3}}}\) ta được
Cho $A = 2\sqrt[3]{3}$ và $B = \sqrt[3]{{25}}$. Chọn khẳng định đúng.
Tìm $x$ biết $\sqrt[3]{{2x + 1}} > - 3$.
Tìm số nguyên nhỏ nhất thỏa mãn bất phương trình $\sqrt[3]{{3 - 2x}} \le 4$.
Thu gọn biểu thức $\sqrt[3]{{\dfrac{{343{a^3}{b^6}}}{{ - 125}}}}$ ta được
Số nghiệm của phương trình $\sqrt[3]{{2x + 1}} = 3$ là
Kết luận nào đúng khi nói về nghiệm của phương trình $\sqrt[3]{{3x - 2}} = - 2$
Số nghiệm của phương trình $\sqrt[3]{{5 + x}} - x = 5$ là
Tổng các nghiệm của phương trình \(\sqrt[3]{{12 - 2x}} + \sqrt[3]{{23 + 2x}} = 5\) là
Thu gọn biểu thức $\sqrt[3]{{{x^3} + 3{x^2} + 3x + 1}} - \sqrt[3]{{8{x^3} + 12{x^2} + 6x + 1}}$ ta được
Tính \(A = \,\sqrt[3]{{2 + 10\sqrt {\dfrac{1}{{27}}} }}\, + \,\sqrt[3]{{2 - 10\sqrt {\dfrac{1}{{27}}} }}\)