Cho phương trình \(5 - 6\left( {2x - 3} \right) = x\left( {3 - 2x} \right) + 5\). Chọn khẳng định đúng.
Phương trình có hai nghiệm trái dấu
Phương trình có hai nghiệm nguyên
Phương trình có hai nghiệm cùng dương
Phương trình có một nghiệm duy nhất
Ta biến đổi phương trình đã cho về dạng \(A\left( x \right).B\left( x \right) = 0 \) thì \( A\left( x \right) = 0\) hoặc \(B\left( x \right) = 0\)
Ta có \(5 - 6\left( {2x - 3} \right) = x\left( {3 - 2x} \right) + 5\)
\(5 - 5 = x\left( {3 - 2x} \right) + 6\left( {2x - 3} \right)\)
\(0 = - x\left( {2x - 3} \right) + 6\left( {2x - 3} \right)\)
\(\left( {2x - 3} \right)\left( { - x + 6} \right) = 0\)
\(+)\,2x - 3 = 0\\2x = 3\\x = \dfrac{3}{2}\)
\(+)\,- x + 6 = 0\\ - x = - 6\\x = 6\)
Vậy phương trình đã cho có hai nghiệm cùng dương \(x = \dfrac{3}{2};x = 6\).
Đáp án : C
Các bài tập cùng chuyên đề
Phương trình: \(\left( {4 + 2x} \right)\left( {x - 1} \right) = 0\) có nghiệm là:
Các nghiệm của phương trình \(\left( {2 + 6x} \right)\left( { - {x^2} - 4} \right) = 0\) là:
Phương trình \(\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) = 0\) có số nghiệm là:
Tổng các nghiệm của phương trình \(\left( {{x^2} - 4} \right)\left( {x + 6} \right)\left( {x - 8} \right) = 0\) là:
Chọn khẳng định đúng.
Tích các nghiệm của phương trình \({x^3} + 4{x^2} + x - 6 = 0\) là
Nghiệm lớn nhất của phương trình \(\left( {{x^2} - 1} \right)\left( {2x - 1} \right) = \left( {{x^2} - 1} \right)\left( {x + 3} \right)\) là
Nghiệm nhỏ nhất của phương trình \({\left( {2x + 1} \right)^2} = {\left( {x - 1} \right)^2}\) là
Tập nghiệm của phương trình \(\left( {{x^2} + x} \right)\left( {{x^2} + x + 1} \right) = 6\) là
Tìm m để phương trình \(\left( {2m - 5} \right)x - 2{m^2} + 8 = 43\) có nghiệm \(x = - 7\).
Tập nghiệm của phương trình
\({\left( {5{x^2} - 2x + 10} \right)^2} = {\left( {3{x^2} + 10x - 8} \right)^2}\) là:
Biết rằng phương trình \({\left( {{x^2} - 1} \right)^2} = 4x + 1\) có nghiệm lớn nhất là \({x_0}\) . Chọn hẳng định đúng.
Cho phương trình $\left( 1 \right):$ \(x\left( {{x^2} - 4x + 5} \right) = 0\) và phương trình \(\left( 2 \right):\) \(\left( {{x^2} - 1} \right)\left( {{x^2} + 4x + 5} \right) = 0\).
Chọn khẳng định đúng.