Đề bài

Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \dfrac{{\sqrt {3x - 2}  + 6x}}{{\sqrt {4 - 3x} }}.\)

  • A.

    \({\rm{D}} = \left[ {\dfrac{2}{3};\dfrac{4}{3}} \right).\)

  • B.

    \({\rm{D}} = \left[ {\dfrac{3}{2};\dfrac{4}{3}} \right).\)

  • C.

    \({\rm{D}} = \left[ {\dfrac{2}{3};\dfrac{3}{4}} \right).\)

  • D.

    \({\rm{D}} = \left( { - \infty ;\dfrac{4}{3}} \right).\)

Phương pháp giải

Hàm số \(y = \sqrt {f\left( x \right)} \) xác định nếu \(f\left( x \right)\) xác định và \(f\left( x \right) \ge 0\).

Hàm số \(y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) xác định khi \(g\left( x \right) \ne 0\).

Lời giải của GV Loigiaihay.com

Hàm số xác định khi \(\left\{ \begin{array}{l}3x - 2 \ge 0\\4 - 3x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \dfrac{2}{3}\\x < \dfrac{4}{3}\end{array} \right. \Leftrightarrow \dfrac{2}{3} \le x < \dfrac{4}{3}.\)

Vậy tập xác định của hàm số là \({\rm{D}} = \left[ {\dfrac{2}{3};\dfrac{4}{3}} \right)\).

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Điểm nào sau đây thuộc đồ thị hàm số $y = 2\left| {x-1} \right| + 3\left| x \right| - 2$?

Xem lời giải >>
Bài 2 :

Cho hàm số $y = \left\{ \begin{array}{l}\dfrac{2}{{x - 1}}{\rm{  }},{\rm{  }}x \in \left( { - \infty ;0} \right)\\\sqrt {x + 1} {\rm{ }},{\rm{  }}x \in \left[ {0;2} \right]\\{x^2} - 1{\rm{ }},{\rm{  }}x \in \left( {2;5} \right]\end{array} \right.$. Tính \(f\left( 4 \right)\), ta được kết quả:

Xem lời giải >>
Bài 3 :

Tập xác định của hàm số $y = \dfrac{{x - 1}}{{{x^2} - x + 3}}$ là

Xem lời giải >>
Bài 4 :

Tập xác định của hàm số $y = \left\{ \begin{array}{l}\sqrt {3 - x} ,x \in \left( { - \infty ;0} \right)\\\sqrt {\dfrac{1}{x}} ,x \in \left( {0; + \infty } \right)\end{array} \right.$ là:

Xem lời giải >>
Bài 5 :

Hàm số $y = \dfrac{{x + 1}}{{x - 2m + 1}}$ xác định trên $\left[ {0;1} \right)$ khi:

Xem lời giải >>
Bài 6 :

Cho hai hàm số $f\left( x \right)$ và $g\left( x \right)$ cùng đồng biến trên khoảng $\left( {a;b} \right)$. Có thể kết luận gì về chiều biến thiên của hàm số $y = f\left( x \right) + g\left( x \right)$ trên khoảng $\left( {a;b} \right)$?

Xem lời giải >>
Bài 7 :

Trong các hàm số sau, hàm số nào tăng trên khoảng $\left( { - 1;0} \right)$?

Xem lời giải >>
Bài 8 :

Trong các hàm số sau đây: $y = \left| x \right|$, $y = {x^2} + 4x$, $y = - {x^4} + 2{x^2}$ có bao nhiêu hàm số chẵn?

Xem lời giải >>
Bài 9 :

Hàm số nào sau đây là hàm số lẻ?

Xem lời giải >>
Bài 10 :

Xét tính chẵn, lẻ của hai hàm số $f\left( x \right) = \left| {x + 2} \right|-\left| {x - 2} \right|,g\left( x \right) = -\left| x \right|$

Xem lời giải >>
Bài 11 :

Xét tính chất chẵn lẻ của hàm số $y = 2{x^3} + 3x + 1$. Trong các mệnh đề sau, tìm mệnh đề đúng?

Xem lời giải >>
Bài 12 :

Trong các hàm số sau, hàm số nào không phải là hàm số chẵn?

Xem lời giải >>
Bài 13 :

Cho hàm số: $y = f\left( x \right) = \left| {2x - 3} \right|.$ Tìm \(x\) để$f\left( x \right) = 3.$

Xem lời giải >>
Bài 14 :

Câu nào sau đây đúng?

Xem lời giải >>
Bài 15 :

Xét sự biến thiên của hàm số $y = \dfrac{1}{{{x^2}}}$. Mệnh đề nào sau đây đúng?

Xem lời giải >>
Bài 16 :

Xét sự biến thiên của hàm số $y = \dfrac{x}{{x - 1}}$. Chọn khẳng định đúng.

Xem lời giải >>
Bài 17 :

Cho hàm số:$f(x) = \left\{ \begin{array}{l}\dfrac{x}{{x + 1}},{\rm{ }}x \ge 0\\\dfrac{1}{{x - 1}},{\rm{ }}x < 0\end{array} \right.$. Giá trị $f\left( 0 \right),f\left( 2 \right),f\left( { - 2} \right)$ là

Xem lời giải >>
Bài 18 :

Hàm số $y = \sqrt {\dfrac{{{x^3}}}{{\left| x \right| - 2}}} $ có tập xác định là:

Xem lời giải >>
Bài 19 :

Cho hàm số \(y = {x^3} - 3{x^2} + 1\). Tịnh tiến đồ thị hàm số lên trên \(3\) đơn vị rồi qua phải \(2\) đơn vị ta được đồ thị hàm số không đi qua điểm nào dưới đây?

Xem lời giải >>
Bài 20 :

Cho hàm số \(y = m{x^2} - 2\left( {m - 1} \right)x + 1\left( {m \ne 0} \right)\) có đồ thị \(\left( {{C_m}} \right)\). Tịnh tiến \(\left( {{C_m}} \right)\) qua trái \(1\) đơn vị ta được đồ thị hàm số \(\left( {{C_m}'} \right)\). Giá trị của \(m\) để giao điểm của \(\left( {{C_m}} \right)\) và \(\left( {{C_m}'} \right)\) có hoành độ \(x = \dfrac{1}{4}\) thỏa mãn điều kiện nào dưới đây?

Xem lời giải >>