Đề bài

Cho đường thẳng xy và đường tròn (O; R) không giao nhau. Gọi M là một điểm di động trên xy. Vẽ đường tròn đường kính OM cắt đường tròn (O) tại A và B. Kẻ \(OH \bot xy\) . Chọn câu đúng.

  • A.

    Đường thẳng AB luôn đi qua một điểm cố định là \(H.\)

  • B.

    Đường thẳng AB luôn đi qua một điểm cố định là trung điểm \(OH\) .

  • C.

    Đường thẳng AB luôn đi qua một điểm cố định là giao của \(OH\) và \(AB.\)

  • D.

    Đường thẳng AB luôn đi qua một điểm cố định là giao của \(OH\) và \(\left( {O;R} \right).\)

Phương pháp giải

+ Sử dụng tam giác đồng dạng

+ Sử dụng hệ thức lượng trong tam giác vuông để chỉ ra các điểm và đoạn thẳng cố định.

Lời giải của GV Loigiaihay.com

Vì \(OH \bot xy,\) nên \(H\)  là một điểm cố định và \(OH\)  không đổi

Gọi giao điểm của \(AB\) và  \(OM\) là \(E;\) giao điểm của \(AB\) với \(OH\)  là \(F.\)

Vì \(\left( {O;R} \right)\) và đường tròn đường kính \(OM\)  cắt nhau tại \(A;B\) nên  \(AB \bot OM\)

Lại có điểm A nằm trên đường tròn đường kính OM nên \(\widehat {OAM} = 90^\circ \)

Xét \(\Delta OEF\) và \(\Delta OHM\) có \(\widehat O\) chung và \(\widehat {OEF} = \widehat {OHM} = 90^\circ \) nên \(\Delta OEF \backsim \Delta OHM\left( {g - g} \right)\)    

Suy ra \(\dfrac{{OE}}{{OH}} = \dfrac{{OF}}{{OM}} \Rightarrow OE.OM = OF.OH\)

Xét \(\Delta MAO\) vuông tại \(A\)  có \(AE\)  là đường cao nên theo hệ thức lượng trong tam giác vuông ta có

\(\begin{array}{*{20}{l}}{OM.OE = O{A^2}\; = {R^2}}\\{\; \Rightarrow OF.OH = {R^2}\; \Rightarrow OF = \dfrac{{{R^2}}}{{OH}}}\end{array}\)

Do \(OH\) không đổi nên \(OF\) cũng không đổi

Vậy \(F\)  là một điểm cố định hay \(AB\)  luôn đi qua một điểm cố định là giao của \(AB\) và \(OH.\)

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Nếu hai đường tròn tiếp xúc với nhau thì số điểm chung của hai đường tròn là

Xem lời giải >>
Bài 2 :

Cho hai đường tròn $\left( {O;R} \right)$ $\left( {O';r} \right)$ với $R > r$ cắt nhau tại hai điểm phân biệt và $OO' = d$. Chọn khẳng định đúng?

Xem lời giải >>
Bài 3 :

Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .

Xem lời giải >>
Bài 4 :

Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là

Xem lời giải >>
Bài 5 :

Cho hai đường tròn $\left( O \right)$ và $\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ các đường kính $AOB;AO'C$. Gọi $DE$ là tiếp tuyến chung của hai đường  tròn  $\left( {D \in \left( O \right);E \in \left( {O'} \right)} \right)$. Gọi $M$ là giao điểm của $BD$ và $CE$. Tính diện tích tứ giác $ADME$ biết $\widehat {DOA} = 60^\circ $ và $OA = 6\,cm.$

Xem lời giải >>
Bài 6 :

Cho hai đường tròn  $\left( O \right);\left( {O'} \right)$ cắt nhau tại $A,B$, trong đó $O' \in \left( O \right)$. Kẻ đường kính $O'OC$ của đường tròn $\left( O \right)$. Chọn khẳng định sai?

Xem lời giải >>
Bài 7 :

Cho hai đường tròn (O;5) và (O’;5) cắt nhau tại A và B. Biết OO’=8. Độ dài dây cung AB là

Xem lời giải >>
Bài 8 :

Cho đường tròn tâm \(O\) bán kính \(R = 2cm\) và đường tròn tâm \(O'\) bán kính \(R' = 3cm.\) Biết \(OO' = 6cm.\) Số tiếp tuyến chung của hai đường tròn đã cho là:

Xem lời giải >>
Bài 9 :

Cho hai đường tròn \(\left( {I;7cm} \right)\) và \(\left( {K;5cm} \right)\). Biết \(IK = 2cm\). Quan hệ giữa hai đường tròn là:

Xem lời giải >>