Đề bài

Cho \(A = \dfrac{{2\sqrt x  - 1}}{{\sqrt x  + 2}}\) với \(x \ge 0.\) Có bao nhiêu giá trị của \(x\) để \(A\) có giá trị nguyên.

  • A.

    \(2\)     

  • B.

    \(1\)     

  • C.

    \(0\)     

  • D.

    \(3\)     

Phương pháp giải

Ta đánh giá giá trị của \(A\) sau đó chọn ra các giá trị nguyên \(A\) có thể đạt được, từ đó tìm \(x.\)

Lời giải của GV Loigiaihay.com

Ta có: \(A = \dfrac{{2\sqrt x  - 1}}{{\sqrt x  + 2}} = \dfrac{{\left( {2\sqrt x  + 4} \right) - 5}}{{\sqrt x  + 2}} = \dfrac{{2\left( {\sqrt x  + 2} \right)}}{{\sqrt x  + 2}} - \dfrac{5}{{\sqrt x  + 2}} = 2 - \dfrac{5}{{\sqrt x  + 2}}\)

Ta có: \(x \ge 0 \Rightarrow \sqrt x  \ge 0 \) hay \(\sqrt x  + 2 \ge 2 > 0 \Rightarrow \dfrac{5}{{\sqrt x  + 2}} > 0\)

suy ra \(2 - \dfrac{5}{{\sqrt x  + 2}} < 2\) hay \(A < 2\)  (1)

Lại có: \(\sqrt x  + 2 \ge 2 \Rightarrow \dfrac{5}{{\sqrt x  + 2}} \le \dfrac{5}{2}\) suy ra \(2 - \dfrac{5}{{\sqrt x  + 2}} \ge 2 - \dfrac{5}{2} \) hay \( A \ge  - \dfrac{1}{2}\) (2)

Từ (1) và (2) ta có: \( - \dfrac{1}{2} \le A < 2\) mà \(A \in \mathbb{Z} \Rightarrow A \in \left\{ {0;1} \right\}\)

+ Với \(A = 0 \) hay \( \dfrac{{2\sqrt x  - 1}}{{\sqrt x  + 2}} = 0 \)

\(\Rightarrow 2\sqrt x  - 1 = 0 \\ \sqrt x  = \dfrac{1}{2} \\ x = \dfrac{1}{4}\left( {tm} \right)\)

+ Với \(A = 1 \) hay \(\dfrac{{2\sqrt x  - 1}}{{\sqrt x  + 2}} = 1 \)

\(\Rightarrow 2\sqrt x  - 1 = \sqrt x  + 2 \\ \sqrt x  = 3 \\ x = 9\left( {tm} \right)\)

Vậy với \(x = \dfrac{1}{4};x = 9\) thì \(A\) đạt giá trị nguyên. Hay có 2 giá trị của \(x\) thỏa mãn đề bài.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Giá trị của biểu thức \(\sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}}  - \sqrt {6 - 2\sqrt 5 } \)   là:

Xem lời giải >>
Bài 2 :

Giá trị của biểu thức \(\sqrt {32}  + \sqrt {50}  - 3\sqrt 8  - \sqrt {18} \) là

Xem lời giải >>
Bài 3 :

Rút gọn biểu thức \(5\sqrt a  + 2\sqrt {\dfrac{a}{4}}  - a\sqrt {\dfrac{4}{a}}  - \sqrt {25a} \)  với \(a > 0\) ta được

Xem lời giải >>
Bài 4 :

Giá trị biểu thức \(\left( {\sqrt 5  + \sqrt 2 } \right)\sqrt {7 - 2\sqrt {10} } \) là

Xem lời giải >>
Bài 5 :

Rút gọn biểu thức \(2\sqrt a  - \sqrt {9{a^3}}  + {a^2}\sqrt {\dfrac{{16}}{a}}  + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \) với $a > 0$ ta được 

Xem lời giải >>
Bài 6 :

Đẳng thức nào dưới đây là đúng?

Xem lời giải >>
Bài 7 :

Chọn khẳng định đúng?

Xem lời giải >>
Bài 8 :

Cho biểu thức \(P = \dfrac{{2x}}{{\sqrt x  + 1}}\). Giá trị của $P$ khi $x = 9$ là

Xem lời giải >>
Bài 9 :

Cho biểu thức \(P = \dfrac{x}{{\sqrt x  + 1}}\). Giá trị của $P$ khi $x = \dfrac{2}{{2 - \sqrt 3 }}$ là

Xem lời giải >>
Bài 10 :

Cho biểu thức \(P = \dfrac{{\sqrt x  + 1}}{{\sqrt x  - 2}}\).

Giá trị của $P$ khi $x = 3 + 2\sqrt 2 $ là:

Xem lời giải >>
Bài 11 :

Cho biểu thức \(P = \dfrac{{x + 2\sqrt x  + 2}}{{\sqrt x }}\)với $x > 0$. So sánh $P$ với $4$.

Xem lời giải >>
Bài 12 :

Cho biểu thức \(P = \dfrac{{3\sqrt x  - 1}}{{\sqrt x  + 1}}\)với $x \ge 0$. Tìm $x$ biết $P = \sqrt x $ .

Xem lời giải >>
Bài 13 :

Cho $P = \dfrac{2}{{\sqrt x  + 1}}$.

Có bao nhiêu giá trị $x \in \mathbb{Z}$ để $P \in \mathbb{Z}$ ?

Xem lời giải >>
Bài 14 :

Cho \(A = \dfrac{1}{{\sqrt 3  - 1}} - \sqrt {27}  + \dfrac{3}{{\sqrt 3 }};\)\(B = \dfrac{{5 + \sqrt 5 }}{{\sqrt 5  + 2}} + \dfrac{{\sqrt 5 }}{{\sqrt 5  - 1}} - \dfrac{{3\sqrt 5 }}{{3 + \sqrt 5 }}\). Chọn câu đúng.

Xem lời giải >>
Bài 15 :

Tính giá trị của \(A =\dfrac{1}{{2\sqrt 1  + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2  + 2\sqrt 3 }} + ... + \dfrac{1}{{2018\sqrt {2017}  + 2017\sqrt {2018} }}\)

Xem lời giải >>
Bài 16 :

Rút gọn biểu thức: \(T = \dfrac{{\left( {\sqrt {2a}  - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a  - 2}}\left( {a > 0;a \ne 4} \right)\)

Xem lời giải >>