Cho hàm số y=f(x) có đạo hàm liên tục trên R và đồ thị hàm số y=f(x) như hình vẽ bên. Tìm số điểm cực trị của hàm số y=2019f(f(x)−1).
13
11
10
12
Xác định số điểm mà đạo hàm đổi dấu của hàm số y=2019f(f(x)−1).
Ta có: y=2019f(f(x)−1)⇒y′=2019f(f(x)−1).f′(f(x)−1).f′(x)ln2019
f′(f(x)−1)=0⇔[f(x)−1=−1f(x)−1=1f(x)−1=3f(x)−1=6⇔[f(x)=0f(x)=2f(x)=4f(x)=7
f′(f(x)−1)=0 có tất cả: 2+5+2+1=10 nghiệm
(trong đó, có các nghiệm x=3,x=6 là nghiệm kép, còn lại là nghiệm đơn).
f′(x)=0⇔[x=−1x=1x=3x=6 : có 4 nghiệm
⇒y′=2019f(f(x)−1).f′(f(x)−1).f′(x)=0 có 12 nghiệm phân biệt, trong đó, x=3,x=6 là nghiệm bội 3, còn lại là nghiệm đơn.
Do đó, số điểm cực trị của hàm số y=2019f(f(x)−1) là 12.
Đáp án : D
Các bài tập cùng chuyên đề
Cho hàm số y=f(x) có đạo hàm trên (a;b). Nếu f′(x) đổi dấu từ âm sang dương qua điểm x0 thuộc (a;b) thì
Giả sử y=f(x) có đạo hàm cấp hai trên (a;b). Nếu {f′(x0)=0f″(x0)>0 thì
Nếu x0 là điểm cực tiểu của hàm số thì f(x0) là:
Nếu x0 là điểm cực đại của hàm số thì (x0;f(x0)) là:
Cho các phát biểu sau:
1. Hàm số y=f(x) đạt cực đại tại x0 khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua x0.
2. Hàm số y=f(x) đạt cực trị tại x0 khi và chỉ khi x0 là nghiệm của đạo hàm.
3. Nếu f′(x0)=0 và f″(x0)=0 thì x0 không phải là cực trị của hàm số y=f(x) đã cho.
4. Nếu f′(x0)=0 và f″(xo)>0 thì hàm số đạt cực đại tại x0.
Các phát biểu đúng là:
Điều kiện để hàm số bậc ba không có cực trị là phương trình y′=0 có:
Chọn phát biểu đúng:
Số điểm cực trị của đồ thị hàm số y=x−12−x là:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y=x3−3x2+1 là:
Hàm số nào sau đây không có cực trị?
Hàm số f(x)=2sin2x−3 đạt cực tiểu tại:
Đồ thị hàm số nào sau đây có 3 điểm cực trị?
Cho hàm số y=f(x) có đạo hàm f′(x)=(x−1)(x2−2)(x4−4). Số điểm cực trị của hàm số y=f(x) là:
Đồ thị hàm số y=x3−3x+2 có 2 điểm cực trị A,B. Diện tích tam giác OAB với O(0;0) là gốc tọa độ bằng:
Cho hàm số y=f(x) có bảng biến thiên trên khoảng (0;2) như sau:
Khẳng định nào sau đây là khẳng định đúng:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
Cho hàm số y=f(x) có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới, chọn khẳng định sai:
Hàm số y=x3−3x2+4 đạt cực tiểu tại:
Cho hàm số y=−x2+3x+6x+2, chọn kết luận đúng: