Sau khi rút gọn biểu thức \(\dfrac{2}{{7 + 3\sqrt 5 }} + \dfrac{2}{{7 - 3\sqrt 5 }}\) là phân số tối giản \(\dfrac{a}{b},\left( {a,b \in \mathbb{Z}} \right)\). Khi đó \(a + b\) có giá trị là:
\(28\)
\(7\)
\(8\)
\(14\)
Trục căn thức ở mẫu theo công thức
Với các biểu thức \(A,B,C\) mà \(A \ge 0,A \ne {B^2}\), ta có \(\dfrac{C}{{\sqrt A + B}} = \dfrac{{C\left( {\sqrt A - B} \right)}}{{A - {B^2}}};\dfrac{C}{{\sqrt A - B}} = \dfrac{{C\left( {\sqrt A + B} \right)}}{{A - {B^2}}}\)
Ta có: \(\dfrac{2}{{7 + 3\sqrt 5 }} + \dfrac{2}{{7 - 3\sqrt 5 }} = \dfrac{{2\left( {7 - 3\sqrt 5 } \right)}}{{\left( {7 + 3\sqrt 5 } \right)\left( {7 - 3\sqrt 5 } \right)}} + \dfrac{{2\left( {7 + 3\sqrt 5 } \right)}}{{\left( {7 - 3\sqrt 5 } \right)\left( {7 + 3\sqrt 5 } \right)}}\)
\( = \dfrac{{14 - 6\sqrt 5 }}{{{7^2} - {{\left( {3\sqrt 5 } \right)}^2}}} + \dfrac{{14 + 6\sqrt 5 }}{{{7^2} - {{\left( {3\sqrt 5 } \right)}^2}}} = \dfrac{{14 - 6\sqrt 5 + 14 + 6\sqrt 5 }}{{49 - 9.5}} = \dfrac{{28}}{4} = \dfrac{7}{1}\)
Suy ra \(a = 7;b = 1 \Rightarrow a + b = 7 + 1 = 8\).
Đáp án : C
Các bài tập cùng chuyên đề
Cho các biểu thức $A,B$ mà $A.B \ge 0;B > 0$, khẳng định nào sau đây là đúng?
Cho các biểu thức với $A < 0$ và $B \ge 0$ , khẳng định nào sau đây là đúng?
Đưa thừa số $\sqrt {81{{\left( {2 - y} \right)}^4}} $ ra ngoài dấu căn ta được ?
Đưa thừa số $5y\sqrt y $ ($y \ge 0$) vào trong dấu căn ta được
Đưa thừa số $x\sqrt {\dfrac{{ - 35}}{x}} $ ($x < 0$) vào trong dấu căn ta được
So sánh hai số $5\sqrt 3 $ và $4\sqrt 5 $
Khử mẫu biểu thức sau $ xy\sqrt {\dfrac{4}{{x^2y^2}}} $ với $x > 0;y > 0$ ta được
Khử mẫu biểu thức sau $ - xy\sqrt {\dfrac{3}{{xy}}} $ với $x < 0;y < 0$ ta được
Sau khi rút gọn biểu thức $\dfrac{1}{{5 + 3\sqrt 2 }} + \dfrac{1}{{5 - 3\sqrt 2 }}$ ta được phân số tối giản $\dfrac{a}{b},\left( {a,b \in \mathbb{Z}} \right)$. Khi đó $2a$ có giá trị là:
Rút gọn biểu thức \(\sqrt {32x} + \sqrt {50x} - 2\sqrt {8x} + \sqrt {18x} \) với $x \ge 0$ ta được kết quả là
Rút gọn biểu thức \(5\sqrt a - 4b\sqrt {25{a^3}} + 5a\sqrt {16a{b^2}} - \sqrt {9a} \) với $a \ge 0;b \ge 0$ ta được kết quả là
Giá trị của biểu thức \(2\sqrt {\dfrac{{16a}}{3}} - 3\sqrt {\dfrac{a}{{27}}} - 6\sqrt {\dfrac{{4a}}{{75}}} \) là
Trục căn thức ở mẫu biểu thức \(\dfrac{{2a}}{{2 - \sqrt a }}\)với $a \ge 0;a \ne 4$ ta được
Trục căn thức ở mẫu biểu thức \(\dfrac{6}{{\sqrt x + \sqrt {2y} }}\)với $x \ge 0;y \ge 0$ ta được
Tính giá trị biểu thức\(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7 - \sqrt 5 }}.\)
Giá trị biểu thức $\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} - 4\sqrt {\dfrac{3}{2}} $ là giá trị nào sau đây?
Cho ba biểu thức $P = x\sqrt y + y\sqrt x ;Q = x\sqrt x + y\sqrt y ;$
$R = x - y$. Biểu thức nào bằng với biểu thức $\left( {\sqrt x - \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)$ với $x,y$ không âm.
Số nghiệm của phương trình \(\sqrt {4{x^2} - 9} = 2\sqrt {2x + 3} \) là
Phương trình \(\dfrac{2}{3}\sqrt {9x - 9} - \dfrac{1}{4}\sqrt {16x - 16} + 27\sqrt {\dfrac{{x - 1}}{{81}}} = 4\) có mấy nghiệm?
Giá trị của biểu thức \(\sqrt {\dfrac{3}{{20}}} + \sqrt {\dfrac{1}{{60}}} - 2\sqrt {\dfrac{1}{{15}}} \) là