Rút gọn biểu thức \(3\sqrt {8a} + \dfrac{1}{4}\sqrt {\dfrac{{32a}}{{25}}} - \dfrac{a}{{\sqrt 3 }}.\sqrt {\dfrac{3}{{2a}}} - \sqrt {2a} \) với \(a > 0\) ta được:
\(\dfrac{{47}}{{10}}\sqrt a \)
\(\dfrac{{21}}{5}\sqrt a \)
\(\dfrac{{47}}{{10}}\sqrt {2a} \)
\(\dfrac{{47}}{5}\sqrt {2a} \)
- Khử mẫu biểu thức lấy căn theo công thức \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt {AB} }}{B}\,\left( {A \ge 0,B > 0} \right)\)
- Sử dụng công thức khai phương một thương \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt A }}{{\sqrt B }}\) với \(A \ge 0,B > 0\) và công thức khai phương một tích \(\sqrt {AB} = \sqrt A .\sqrt B ,\,\,\left( {A,B \ge 0} \right)\)
- Cộng trừ các căn thức bậc hai.
\(3\sqrt {8a} + \dfrac{1}{4}\sqrt {\dfrac{{32a}}{{25}}} - \dfrac{a}{{\sqrt 3 }}.\sqrt {\dfrac{3}{{2a}}} - \sqrt {2a} \) \( = 3\sqrt {4.2a} + \dfrac{1}{4}\dfrac{{\sqrt {16.2a} }}{{\sqrt {25} }} - \dfrac{a}{{\sqrt 3 }}.\dfrac{{\sqrt 3 }}{{\sqrt {2a} }} - \sqrt {2a} \) \( = 3.2\sqrt {2a} + \dfrac{1}{4}.\dfrac{{4\sqrt {2a} }}{5} - \dfrac{a}{{\sqrt 3 }}.\dfrac{{\sqrt 3 .\sqrt {2a} }}{{2a}} - \sqrt {2a} \) \( = 6\sqrt {2a} + \dfrac{1}{5}\sqrt {2a} - \dfrac{1}{2}\sqrt {2a} - \sqrt {2a} \)
\( = \sqrt {2a} .\left( {6 + \dfrac{1}{5} - \dfrac{1}{2} - 1} \right) = \dfrac{{47}}{{10}}\sqrt {2a} \)
Đáp án : C
Các bài tập cùng chuyên đề
Giá trị của biểu thức \(\sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}} - \sqrt {6 - 2\sqrt 5 } \) là:
Giá trị của biểu thức \(\sqrt {32} + \sqrt {50} - 3\sqrt 8 - \sqrt {18} \) là
Rút gọn biểu thức \(5\sqrt a + 2\sqrt {\dfrac{a}{4}} - a\sqrt {\dfrac{4}{a}} - \sqrt {25a} \) với \(a > 0\) ta được
Giá trị biểu thức \(\left( {\sqrt 5 + \sqrt 2 } \right)\sqrt {7 - 2\sqrt {10} } \) là
Rút gọn biểu thức \(2\sqrt a - \sqrt {9{a^3}} + {a^2}\sqrt {\dfrac{{16}}{a}} + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \) với $a > 0$ ta được
Đẳng thức nào dưới đây là đúng?
Chọn khẳng định đúng?
Cho biểu thức \(P = \dfrac{{2x}}{{\sqrt x + 1}}\). Giá trị của $P$ khi $x = 9$ là
Cho biểu thức \(P = \dfrac{x}{{\sqrt x + 1}}\). Giá trị của $P$ khi $x = \dfrac{2}{{2 - \sqrt 3 }}$ là
Cho biểu thức \(P = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}}\).
Giá trị của $P$ khi $x = 3 + 2\sqrt 2 $ là:
Cho biểu thức \(P = \dfrac{{x + 2\sqrt x + 2}}{{\sqrt x }}\)với $x > 0$. So sánh $P$ với $4$.
Cho biểu thức \(P = \dfrac{{3\sqrt x - 1}}{{\sqrt x + 1}}\)với $x \ge 0$. Tìm $x$ biết $P = \sqrt x $ .
Cho $P = \dfrac{2}{{\sqrt x + 1}}$.
Có bao nhiêu giá trị $x \in \mathbb{Z}$ để $P \in \mathbb{Z}$ ?
Cho \(A = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 2}}\) với \(x \ge 0.\) Có bao nhiêu giá trị của \(x\) để \(A\) có giá trị nguyên.
Cho \(A = \dfrac{1}{{\sqrt 3 - 1}} - \sqrt {27} + \dfrac{3}{{\sqrt 3 }};\)\(B = \dfrac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \dfrac{{\sqrt 5 }}{{\sqrt 5 - 1}} - \dfrac{{3\sqrt 5 }}{{3 + \sqrt 5 }}\). Chọn câu đúng.
Tính giá trị của \(A =\dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + ... + \dfrac{1}{{2018\sqrt {2017} + 2017\sqrt {2018} }}\)
Rút gọn biểu thức: \(T = \dfrac{{\left( {\sqrt {2a} - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a - 2}}\left( {a > 0;a \ne 4} \right)\)