Một khối thủy tinh P có chiết suất n đặt trong không khí. Tiết diện thẳng là một tam giác cân ABC vuông tại B. Chiếu vuông góc tới mặt AB một chùm sáng song song SI thì tia sáng đi là là mặt AC. Xác định chiết suất n của khối chất P
\(n = \sqrt 3 \)
\(n = \sqrt 2 \)
\(n = 1,5\)
\(n = 1,8\)
+ Sử dụng hệ thức lượng giác trong tam giác
+ Vận dụng biểu thức định luật khúc xạ ánh sáng: \({n_1}\sin i = {n_2}{\mathop{\rm s}\nolimits} {\rm{inr}}\)
- Cách 1:
Vì tia SI đi vuông góc với mặt AB nên đi thẳng tới mặt bên AC với góc tới i.
+ Tam giác ABC vuông và cân tại B nên: \(\widehat A = \widehat C = i = {45^0}\)
+ Tia ló đi là là mặt AC nên r = 900
Theo định luật khúc xạ ánh sáng, ta có: \(n\sin {45^0} = 1.\sin {90^0} \to n = \sqrt 2 \)
- Cách 2:
Vì tia SI đi vuông góc với mặt AB nên đi thẳng tới mặt bên AC với góc tới i.
+ Tam giác ABC vuông và cân tại B nên: \(\widehat A = \widehat C = i = {45^0}\)
+ Tia ló đi là là mặt AC=>góc tới i chính là góc giới hạn:\(\sin {i_{gh}} = \frac{{{n_2}}}{{{n_1}}} \leftrightarrow \sin {45^0} = \frac{1}{n} \to n = \sqrt 2 \)
Đáp án : B
Các bài tập cùng chuyên đề
Hiện tượng phản xạ toàn phần là hiện tượng
Điều kiện cần để xảy ra hiện tượng phản xạ toàn phần nào sau đây là đúng?
Phát biểu nào sau đây là không đúng?
Chiếu một chùm tia sáng tới mặt phân cách giữa hai môi trường trong suốt. Khi xảy ra hiện tượng phản xạ toàn phần thì:
Phát biểu nào sau đây là không đúng?
Góc giới hạn được xác định bởi biểu thức:
Cho chiết suất của nước bằng 4/3, của benzen bằng 1,5; của thủy tinh flin là 1,8. Hiện tượng phản xạ toàn phần xảy ra khi chiếu ánh sáng từ:
Tính góc giới hạn phản xạ toàn phần khi ánh sáng truyền từ từ nước sang không khí . Biết chiết suất của nước là \(\frac{4}{3}\).
Thả nổi trên mặt nước một đĩa nhẹ, chắn sáng, hình tròn. Mắt người quan sát đặt trên mặt nước sẽ không thấy được vật sáng ở đáy chậu khi bán kính đĩa không nhỏ hơn 20 cm. Tính chiều sâu của lớp nước trong chậu. Biết rằng vật và tâm đĩa nằm trên đường thẳng đứng và chiết suất của nước là n = 4/3.
Có 3 môi trường trong suốt. Nếu tia sáng truyền từ môi trường 1 vào môi trường 2 dưới góc tới i thì góc khúc xạ là 300. Nếu tia sáng truyền từ môi trường 1 vào môi trường 3 cũng dưới góc tới i thì góc khúc xạ là 450. Góc giới hạn phản xạ toàn phần ở mặt phân cách giữa môi trường 2 và 3 là:
Một đĩa tròn mỏng bằng gỗ, bán kính R = 5cm nổi trên mặt nước. Ở tâm đĩa có gắn một cây kim, thẳng đứng, chìm trong nước có chiết suất n = 4/3. Dù đặt mắt ở đâu cũng không thấy cây kim. Chiều dài tối đa của cây kim là:
Một khối thủy tinh P có chiết suất \(n = 1,5\). Biết tiết diện thẳng là một tam giác ABC vuông cân tại B. Chiếu vuông góc tới mặt AB một chùm sáng song song SI. Góc D hợp bởi tia ló và tia tới là:
Trong các ứng dụng sau đây, ứng dụng của hiện tượng phản xạ toàn phần là:
Sợi quang trong cáp quang ứng dụng hiện tượng
Một ống dẫn sáng hình trụ với lõi có chiết suất \({n_1} = 1,5\) và phần vỏ bọc ngoài có chiết suất\({n_2} = \sqrt 2 \). Chùm tia tới hội tụ tại mặt trước của ống tại điểm I với góc \(2\alpha \). Xác định \(\alpha \) lớn nhất để tia sáng trong chùm đều truyền được trong ống.
Một tấm thủy tinh mỏng, trong suốt, chiết suất \({n_1} = 1,5\) có tiết diện là hình chữ nhật ABCD (AB rất lớn so với AD) mặt đáy AB tiếp xúc với một chất lỏng có chiết suất \({n_2} = \sqrt 2 \). Chiếu tia sáng SI nằm trong mặt phẳng ABCD tới mặt AD sao cho tia tới nằm phía trên pháp tuyến ở điểm tới và tia khúc xạ trong thủy tinh gặp đáy AB ở điểm K. Giá trị lớn nhất của góc tới i để có phản xạ toàn phần tại K.
Một khối thủy tinh hình bán cầu tâm O bán kính R, chiết suất \(n = \sqrt 2 \) đặt trong không khí. Chiếu một chùm tia sáng song song, rộng vào toàn bộ mặt phẳng của bán cầu và vuông góc với mặt phẳng đó.
Vẽ tiếp đường đi của tia sáng (1) cách O đoạn R/2. Góc lệch của tia ló ra khỏi tấm thủy tinh so với tia tới là:
Kẻ trộm giấu viên kim cương ở dưới đáy một bể bơi. Anh ta đặt chiếc bè mỏng đồng chất hình tròn bán kính R trên mặt nước, tâm của bè nằm trên đường thẳng đứng đi qua viên kim cương. Mặt nước yên lặng và mức nước là h = 2,0m. Cho chiết suất của nước là \(n=\frac{4}{3}\). Giá trị nhỏ nhất của R để người ở ngoài bể bơi không nhìn thấy viên kim cương gần đúng bằng:
Cho 3 môi trường (1), (2), (3). Với cùng một góc tới, nếu ánh sáng đi từ (1) vào (2) thì góc khúc xạ là \({30^0}\), nếu ánh sáng đi từ (1) vào (3) thì góc khúc xạ là \({45^0}\). Hỏi môi trường (2) và (3) thì môi trường nào chiết quang hơn? Tính góc giới hạn phản xạ toàn phần giữa (2) và (3).
Nước có chiết suất 1,33. Chiếu ánh sáng từ nước ra ngoài không khí, góc có thể xảy ra hiện tượng phản xạ toàn phần là