Lúc 7 giờ một ô tô đi từ A đến B. Lúc 7 giờ 30 phút một xe máy đi từ B đến A với vận tốc kém vận tốc của ô tô là 24km/h. Ô tô đến B được 20 phút thì xe máy mới đến A. Tính vận tốc mỗi xe, biết quãng đường AB dài 120 km.
Vận tốc xe máy 40 là km/h, vận tốc ô tô là 64km/h
Vận tốc xe máy là 45 km/h, vận tốc ô tô là 69km/h
Vận tốc xe máy là 36 km/h, vận tốc ô tô là 58 km/h
Vận tốc xe máy là 48 km/h, vận tốc ô tô là 72 km/h
Các bước giải bài toán bằng cách lập phương trình:
+) Chọn ẩn và đặt điều kiện cho ẩn
+) Biểu thị các đại lượng chưa biết qua ẩn và các đại lượng đã biết.
+) Lập phương trình-giải phương trình.
+) Chọn kết quả và trả lời.
Gọi vận tốc của xe máy là \(x\;\;(km/h;x > 0)\)
Vận tốc của ô tô là \(x + 24\;\;(km/h)\)
Thời gian xe máy đi hết quãng đường là: \(\dfrac{{120}}{x}\;\;\left( h \right)\)
Thời gian ô tô đi hết quãng đường là: \(\dfrac{{120}}{{x + 24}}\;\;\left( h \right)\)
Đổi \(30\) phút \( = \dfrac{1}{2}\;\left( h \right),\;\;20\) phút \( = \dfrac{1}{3}\;\left( h \right).\)
Theo đề bài ta có phương trình:
\(\begin{array}{l}\dfrac{{120}}{{x + 24}} + \dfrac{1}{3} = \dfrac{{120}}{x} - \dfrac{1}{2}\\ \dfrac{{120}}{x} - \dfrac{{120}}{{x + 24}} = \dfrac{1}{3} + \dfrac{1}{2} = \dfrac{5}{6}\\ 5{x^2} + 120x - 17280 = 0\\ {x^2} + 24x - 3456 = 0\end{array}\)
Ta có: \(\Delta ' = {12^2} + 3456 = 3600\) suy ra \(\sqrt {\Delta '} = 60\) suy ra phương trình có 2 nghiệm \({x_1} = - 12 - 60 = - 72\) (loại) và \({x_2} = - 12 + 60 = 48\)(tmđk).
Vậy vận tốc xe máy là 48km/h, vận tốc ô tô là \(48 + 24 = 72\)km/h.
Đáp án : D
Các bài tập cùng chuyên đề
Cho hai số tự nhiên biết rằng hai lần số thứ nhất hơn ba lần số thứ hai là $9$ và hiệu các bình phương của chúng bằng $119$ . Tìm số lớn hơn.
Tích của hai số tự nhiên liên tiếp lớn hơn tổng của chúng là $109$. Tìm số bé hơn.
Một hình chữ nhật có chiều dài gấp $3$ lần chiều rộng. Nếu cả chiều dài và chiều rộng cùng tăng thêm $5cm$ thì được một hình chữ nhật mới có diện tích bằng $153c{m^2}$ . Tìm chu vi của hình chữ nhật ban đầu.
Cho tam giác vuông có cạnh huyền bằng $20cm$ . Hai cạnh góc vuông có độ dài hơn kém nhau $4cm$ . Một trong hai cạnh góc vuông của tam giác vuông đó có độ dài là:
Một thửa ruộng hình tam giác có diện tích \(180\,{m^2}\). Tính chiều dài cạnh đáy thửa ruộng, biết rằng nếu tăng cạnh đáy lên $4m$ và chiều cao tương ứng giảm đi $1\,\,m$ thì diện tích không đổi.
Một công nhân dự định làm $120$ sản phẩm trong một thời gian dự định. Sau khi làm được $2$ giờ với năng suất dự kiến, người đó đã cải tiến các thao tác hợp lý hơn nên đã tăng năng suất thêm $3$ sản phẩm mỗi giờ và vì vậy người đó hoàn thành kế hoạch sớm hơn dự định $1$ giờ $36$ phút. Hãy tính năng suất dự kiến.
Theo kế hoạch, một người công nhân phải hoàn thành $84$ sản phẩm trong một thời gian nhất định. Do cải tiến kĩ thuật, nên thực tế mỗi giờ người đó đã làm được nhiều hơn $2$ sản phẩm so với số sản phẩm phải làm trong một giờ theo kế hoạch. Vì vậy, người đó hoàn thành công việc sớm hơn dự định \(1\) giờ. Hỏi theo kế hoạch, mỗi giờ người công nhân phải làm bao nhiêu sản phẩm?
Một xưởng có kế hoạch in xong $6000$ quyển sách giống nhau trong một thời gian quy định, biết số quyển sách in được trong một ngày là bằng nhau. Để hoàn thành sớm kế hoạch , mỗi ngày xưởng đã in nhiều hơn $300$ quyển sách so với số quyển sách phải in trong kế hoạch, nên xưởng in xong $6000$ quyển sách nói trên sớm hơn kế hoạch $1$ ngày. Tính số quyển sách xưởng in được trong $1$ ngày theo kế hoạch.
Hai tổ sản xuất cùng làm chung công việc thì hoàn thành trong $2$ giờ. Hỏi nếu làm riêng một mình, tổ $1$ phải hết bao nhiêu thời gian mới hoàn thành công việc, biết khi làm riêng tổ một hoàn thành sớm hơn tổ hai là $3$ giờ.
Một lâm trường dự định trồng $75$ $ha$ rừng trong một số tuần (mỗi tuần trồng được diện tích bằng nhau). Thực tế, mỗi tuần lâm trường trồng vượt mức $5$ $ha$ so với dự định nên cuối cùng đã trồng được $80$ $ha$ và hoàn thành sớm hơn dự định một tuần. Hỏi mỗi tuần lâm trường dự định trồng bao nhiêu $ha$ rừng?
Một người đi xe máy từ $A$ đến $B$ với vận tốc $25$ km/h. Lúc về người đó đi với vận tốc $30$ km/h nên thời gian về ít hơn thời gian đi là $20$ phút. Tính quãng đường $AB$.
Một ôtô phải đi quãng đường $AB$ dài $60$ km trong một thời gian nhất định. Xe đi nửa quãng đường đầu với vận tốc hơn dự định là $10$ km/h và đi nửa sau kém hơn dự đinh $6$ km/h. Biết ôtô đã đến đúng như dự định. Tính thời gian người đó dự định đi quãng đường $AB$.
Một ca nô chạy xuôi dòng sông từ $A$ đến $B$ rồi chạy ngược dòng từ $B$ về $A$ hết tất cả $7$giờ $30$ phút. Tính vận tốc thực của ca nô biết quãng đường sông $AB$ dài $54{\rm{ km}}$ và vận tốc dòng nước là $3{\rm{ km/h}}$
Một ca nô chạy xuôi dòng với quãng đường $42{\rm{km}}$, rồi sau đó ngược dòng trở lại $20{\rm{ km}}$ hết tổng cộng $5{\rm{h}}$. Biến vận tốc của dòng nước chảy là $2{\rm{ km/h}}$. Tính vận tốc của ca nô lúc dòng nước yên lặng.
Cho hai vòi nước cùng lúc chảy vào một bể cạn. Nếu chảy riêng từng vòi thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai $4$ giờ. Khi nước đầy bể, người ta khóa vòi thứ nhất và vòi thứ hai lại, đồng thời mở vòi thứ ba cho nước chảy ra thì sau 6 giờ bể cạn nước. Khi nước trong bể đã cạn mở cả ba vòi thì sau $24$ giờ bể lại đầy nước. Hỏi nếu chỉ dùng vòi thứ nhất thì sau bao lâu bể đầy nước?
Một công ty vận tải dự định điều một số xe tải để vận chuyển $24$ tấn hàng. Thực tế khi đến nơi thì công ty bổ sung thên $2$ xe nữa nên mỗi xe chở ít đi $2$ tấn so với dự định. Hỏi số xe dự định được điều động là bao nhiêu? Biết số lượng hàng chở ở mỗi xe như nhau và mỗi xe chở một lượt.
Một phòng họp có 360 ghế ngồi được xếp thành từng dãy và số ghế của từng dãy đều như nhau. Nếu số dãy tăng thêm 1 và số ghế của mỗi dãy tăng thêm 1 thì trong phòng có 400 ghế. Hỏi trong phòng họp có bao nhiêu dãy ghế (biết số dãy ghế ít hơn 20).
Một mảnh đất hình chữ nhật có chiều dài 30 m, chiều rộng 20 m. Xung quanh về phía trong mảnh đất người ta để một lối đi có chiều rộng không đổi, phần còn lại là một hình chữ nhật được trồng hoa. Biết rằng diện tích trồng hoa bằng 84% diện tích mảnh đất. Tính chiều rộng của lối đi.
Một tấm bìa hình chữ nhật có chu vi 80 cm. Người ta cắt ra ở mỗi góc một hình vuông cạnh 3 cm rồi gấp lên thành một hình hộp chữ nhật không có nắp có diện tích là \(339\,cm^2.\) Tính kích thước ban đầu của tấm bìa.