Đề bài

Tìm điều kiện của tham số m để phương trình \(m{x^2} + 2\left( {m + 1} \right)x + 1 = 0\) có nghiệm.

  • A.

    \(m \ne 0\)

  • B.

    \(m < 0\)

  • C.

    \(m > 0\)

  • D.

    \(m \in \mathbb{R}\)

Phương pháp giải

Xét phương trình bậc hai: ${\rm{a}}{{\rm{x}}^2} + bx + c = 0\,\,(a \ne 0)$

Bước 1: Kiểm tra điều kiện của phương trình bậc hai một ẩn: $a \ne 0$

Bước 2: Tính biệt thức \(\Delta'\), với \(\Delta' \ge 0\) thì phương trình có nghiệm.

Lời giải của GV Loigiaihay.com

Phương trình \(m{x^2} + 2\left( {m + 1} \right)x + 1 = 0\) có \(\left( {a = m;b = 2\left( {m + 1} \right);c = 1} \right)\)

TH1: Với $m = 0$ ta có phương trình $2x + 1 = 0$ suy ra $x =  - \dfrac{1}{2}$ 

Do đó với $m = 0$ thì phương trình có nghiệm. (1)

TH2: Với $m \ne 0, b' = m + 1$

Biệt thức \(\Delta'  = {\left( {m + 1} \right)^2} - m.1 \)\(= {m^2} + m + 1 = {m^2} + m + \frac{1}{4} + \frac{3}{4} \) \(= {\left( {m + \frac{1}{2}} \right)^2} + \frac{3}{4}\)

Phương trình đã cho có nghiệm khi $\Delta' \ge 0$ hay ${\left( {m + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0$ suy ra ${\left( {m + \frac{1}{2}} \right)^2} \ge - \frac{3}{4}$ (luôn đúng với mọi \(m\)) (2)

Từ (1) và (2) suy ra phương trình đã cho có nghiệm với mọi \(m \in \mathbb{R}.\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình nào dưới đây là phương trình bậc hai một ẩn

Xem lời giải >>
Bài 2 :

Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta  = {b^2} - 4ac$. Phương trình đã cho vô nghiệm khi:

Xem lời giải >>
Bài 3 :

Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta  = {b^2} - 4ac > 0$ . Khi đó phương trình có hai nghiệm là

Xem lời giải >>
Bài 4 :

Không dùng công thức nghiệm, tính tổng các nghiệm của phương trình $6{x^2} - 7x = 0$.

Xem lời giải >>
Bài 5 :

Không dùng công thức nghiệm, tìm số nghiệm của phương trình $ - 4{x^2} + 9 = 0$.

Xem lời giải >>
Bài 6 :

Tìm tích các giá trị của m để phương trình $4m{x^2} - x - 14{m^2} = 0$ có nghiệm $x = 2$.

Xem lời giải >>
Bài 7 :

Tính biệt thức $\Delta $ từ đó tìm số nghiệm của phương trình $9{x^2} - 15x + 3 = 0$.

Xem lời giải >>
Bài 8 :

Tính biệt thức $\Delta $ từ đó tìm các nghiệm (nếu có ) của phương trình ${x^2} - 2\sqrt 2 x + 2 = 0$

Xem lời giải >>
Bài 9 :

Tìm điều kiện của tham số  $m$ để phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có hai nghiệm phân biệt .

Xem lời giải >>
Bài 10 :

Tìm các giá trị của tham số  $m$ để  phương trình \({x^2} + mx - m = 0\) có nghiệm kép.

Xem lời giải >>
Bài 11 :

Tìm điều kiện của tham số $m$ để phương trình \({x^2} + (1 - m)x - 3 = 0\) vô nghiệm

Xem lời giải >>
Bài 12 :

Tìm điều kiện của tham số $m$ để phương trình \((m + 2){x^2} + 2x + m = 0\) vô nghiệm

Xem lời giải >>
Bài 13 :

Tìm điều kiện của tham số $m$  để phương trình \(m{x^2} - 2(m - 1)x + m - 3 = 0\) có nghiệm.

Xem lời giải >>
Bài 14 :

Cho phương trình ${x^2} - \left( {m - 1} \right)x - m = 0$. Kết luận nào sau đây là đúng?

Xem lời giải >>
Bài 15 :

Biết rằng phương trình ${x^2} - {\rm{ }}2(3m + 2)x + {\rm{ }}2{m^2} - 3m - 10 = 0$

 có một trong các nghiệm bằng $ - 1$. Tìm nghiệm còn lại với $m > 0$

Xem lời giải >>
Bài 16 :

Tìm \(m\) để hai phương trình \({x^2} + mx + 1 = 0\) và \({x^2} + x + m = 0\) có ít nhất một nghiệm chung.

Xem lời giải >>
Bài 17 :

Cho hai phương trình \({x^2} - 13x + 2m = 0\) (1) và \({x^2} - 4x + m = 0\) (2). Xác định \(m\) để một nghiệm phương trình (1) gấp đôi \(1\)  nghiệm phương trình (2).

Xem lời giải >>
Bài 18 :

Phương trình \({x^2} - \left( {\sqrt 3  + \sqrt 2 } \right)x + \sqrt 6  = 0\) có các nghiệm đều là nghiệm của phương trình \({x^4} + b{x^2} + c = 0\,\,\left(  *  \right).\) Tìm \(b,c\) và giải phương trình \(\left(  *  \right)\) ứng với \(b,c\) vừa tìm được.

Xem lời giải >>
Bài 19 :

Cho phương trình \({x^2} + 1 = 9{m^2}{x^2} + 2\left( {3m + 1} \right)x\,\left( {m \in \,R} \right).\) Tích \(P\) tất cả các giá trị của \(m\) để phương trình đã cho không là phương trình bậc hai bằng

Xem lời giải >>
Bài 20 :

Cho hai phương trình \({x^2} + \left( {2{m^2} + 1} \right)x + {m^3} + 7\sqrt 2  - 23 = 0\,\,\,\left( 1 \right)\) và \(2{x^2} + \left( {{m^2} - m} \right)x + 9\sqrt 2  - 30 = 0\,\,\,\left( 2 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

Tìm giá trị của tham số \(m\) để phương trình (1) và phương trình (2) có nghiệm chung \(x = 3\).

Xem lời giải >>