Đề bài

Cho parabol \(\left( P \right)\) có đỉnh \(O\) và đi qua điểm \(A\left( {2;4} \right)\) và đường thẳng  \(\left( d \right):y = 2(m - 1)x + 2m + 2\) (với \(m\) là tham số). Giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\)  tại hai điểm phân biệt là

  • A.

    \(m > 2 + \sqrt 5 \)

  • B.

    \(m < 2 - \sqrt 5 \)

  • C.

    \(\left[ \begin{array}{l}m > 2 + \sqrt 5 \\m < 2 - \sqrt 5 \end{array} \right.\)

  • D.

    Với mọi \(m\)

Phương pháp giải

Viết phương trình parabol khi biết điểm đi qua

Sử dụng biện luận phương trình bậc hai để biện luận số giao điểm của hai đồ thị thông qua phương trình hoành độ giao điểm

Lời giải của GV Loigiaihay.com

Parabol \(\left( P \right)\)  có đỉnh \(O\) nên có dạng \(y = a{x^2}\left( {a \ne 0} \right)\).

Mà \(\left( P \right)\)  đi qua điểm \(A\left( {2;4} \right)\) nên toạ độ \(A\) thoả mãn phương trình parabol \(\left( P \right)\)  suy ra \(4 = a{.2^2} = 4a \Leftrightarrow a = 1\) (thoả mãn \(a \ne 0\))

Phương trình parabol \(\left( P \right)\)  là \(y = {x^2}\).

\(\left( d \right)\) cắt \(\left( P \right)\)  tại hai điểm phân biệt thì phương trình hoành độ giao điểm phải có hai nghiệm phân biệt.

Suy ra phương trình \({x^2} - 2(m - 1)x - 2m - 2 = 0\) có hai nghiệm phân biệt.

\( \Leftrightarrow \Delta ' = {( - (m - 1))^2} + 2m + 2 > 0\)\( \Leftrightarrow {m^2} - 2m + 1 + 2m + 2 > 0\)\( \Leftrightarrow {m^2} + 3 > 0\) (luôn đúng)

Vậy \(\left( d \right)\)  luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

Đáp án : D

Các bài tập cùng chuyên đề