Cho parabol \(\left( P \right)\) có đỉnh \(O\) và đi qua điểm \(A\left( {2;4} \right)\) và đường thẳng \(\left( d \right):y = 2(m - 1)x + 2m + 2\) (với \(m\) là tham số). Giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt là
\(m > 2 + \sqrt 5 \)
\(m < 2 - \sqrt 5 \)
\(\left[ \begin{array}{l}m > 2 + \sqrt 5 \\m < 2 - \sqrt 5 \end{array} \right.\)
Với mọi \(m\)
Viết phương trình parabol khi biết điểm đi qua
Sử dụng biện luận phương trình bậc hai để biện luận số giao điểm của hai đồ thị thông qua phương trình hoành độ giao điểm
Parabol \(\left( P \right)\) có đỉnh \(O\) nên có dạng \(y = a{x^2}\left( {a \ne 0} \right)\).
Mà \(\left( P \right)\) đi qua điểm \(A\left( {2;4} \right)\) nên toạ độ \(A\) thoả mãn phương trình parabol \(\left( P \right)\) suy ra \(4 = a{.2^2} = 4a \Leftrightarrow a = 1\) (thoả mãn \(a \ne 0\))
Phương trình parabol \(\left( P \right)\) là \(y = {x^2}\).
\(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình hoành độ giao điểm phải có hai nghiệm phân biệt.
Suy ra phương trình \({x^2} - 2(m - 1)x - 2m - 2 = 0\) có hai nghiệm phân biệt.
\( \Leftrightarrow \Delta ' = {( - (m - 1))^2} + 2m + 2 > 0\)\( \Leftrightarrow {m^2} - 2m + 1 + 2m + 2 > 0\)\( \Leftrightarrow {m^2} + 3 > 0\) (luôn đúng)
Vậy \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.
Đáp án : D
Các bài tập cùng chuyên đề
Đường thẳng $d:y = mx + n$ và parabol $\left( P \right):y = a{x^2}$$\left( {a \ne 0} \right)$ tiếp xúc với nhau khi phương trình $a{x^2} = mx + n$ có
Chọn khẳng định đúng. Nếu phương trình $a{x^2} = mx + n$ vô nghiệm thì đường thẳng $d:y = mx + n$ và parabol $\left( P \right):y = a{x^2}$
Số giao điểm của đường thẳng $d:y = 2x + 4$ và parabol $\left( P \right):y = {x^2}$ là:
Tìm tham số $m$ để đường thẳng $d:y = \dfrac{1}{2}x + m$ tiếp xúc với parabol $\left( P \right):y = \dfrac{{{x^2}}}{2}$
Tìm tham số $m$ để đường thẳng $d:y = mx + 2$ cắt parabol $\left( P \right):y = \dfrac{{{x^2}}}{2}$ tại hai điểm phân biệt
Tìm tham số $m$ để đường thẳng $d:y = 2x + m$ và parabol $\left( P \right):y = 2{x^2}$ không có điểm chung
Tìm tham số $m$ để đường thẳng $d:y = mx + m + 1$ và parabol $\left( P \right):y = {x^2}$ cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.
Tìm tham số $m$ để đường thẳng $d:y = \left( {m - 2} \right)x + 3m$ và parabol $\left( P \right):y = {x^2}$ cắt nhau tại hai điểm phân biệt nằm hai phía của trục tung.
Có bao nhiêu giá trị của tham số $m$ để đường thẳng $d:y = 2mx + 4$ và parabol $\left( P \right):y = {x^2}$ cắt nhau tại hai điểm phân biệt có hoành độ ${x_1};{x_2}$ thỏa mãn $\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} = - 3$
Có bao nhiêu giá trị nguyên của tham số $m$ để đường thẳng $d:y = 2mx - 2m + 3$ và parabol $\left( P \right):y = {x^2}$ cắt nhau tại hai điểm phân biệt có tọa độ $\left( {{x_1};{y_1}} \right);\left( {{x_2};{y_2}} \right)$ thỏa mãn ${y_1} + {y_2} < 9$
Cho đường thẳng \(d\) :\(y = - 3x + 1\) và parabol : \(\left( P \right)\)\(y = m{x^2}\left( {m \ne 0} \right)\). Tìm \(m\) để \(d\) và \(\left( P \right)\) cắt nhau tại hai điểm \(A\) và \(B\) phân biệt và cùng nằm về một phía đối với trục tung.
Tìm giá trị của tham số $m$ để đường thẳng $d:y = - \dfrac{1}{2}x + m$ và parabol $\left( P \right):y = - \dfrac{1}{4}{x^2}$ cắt nhau tại hai điểm phân biệt có hoành độ ${x_1};{x_2}$ thỏa mãn \(3{x_1} + 5{x_2} = 5\)
Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(d:y = \left( {{m^2} + 2} \right)x - {m^2}\). Tìm \(m\) để \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt nằm về bên phải trục tung.
Cho parabol \(\left( P \right):y = a{x^2}\left( {a \ne 0} \right)\) đi qua điểm \(A\left( { - 2;4} \right)\) và tiếp xúc với đồ thị \(\left( d \right)\) của hàm số \(y = 2(m - 1)x - (m - 1)\).Toạ độ tiếp điểm là