Cho đường tròn \(\left( {O;R} \right).\) Gọi \(H\) là điểm thuộc bán kính \(OA\) sao cho \(OH = \dfrac{{\sqrt 3 }}{2}OA\) . Dây \(CD\) vuông góc với \(OA\) tại $H.$ Tính số đo cung lớn \(CD.\)
$260^\circ $
$300^\circ $
$240^\circ $
$120^\circ $
+) Sử dụng liên hệ giữa đường kính và dây
+) Số đo cung
- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
- Số đo của cung lớn bằng hiệu giữa \({360^0}\) và số đo của cung nhỏ (có chung $2$ mút với cung lớn).
Xét đường tròn$\left( O \right)$ có $OA \bot CD$ tại $H$ nên $H$ là trung điểm của $CD.$
Xét tam giác \(OHC\) vuông tại \(H\) có \(\cos \widehat {HOC} = \dfrac{{OH}}{{OC}} = \dfrac{{\dfrac{{\sqrt 3 R}}{2}}}{R} = \dfrac{{\sqrt 3 }}{2} \Rightarrow \widehat {HOC} = 30^\circ \)
Mà tam giác \(OCD\) cân tại \(O\left( {OC = OD = R} \right)\) có \(OH\) là đường cao nên \(OH\) cũng là đường phân giác, suy ra \(\widehat {DOC} = 2.\widehat {COH} = 2.30^\circ = 60^\circ \)
Do đó số đo cung nhỏ $CD$ là $60^\circ $ và số đo cung lớn $CD$ là $360^\circ - 60^\circ = 300^\circ $.
Đáp án : B
Các bài tập cùng chuyên đề
Chọn khẳng định đúng. Góc ở tâm là góc
Chọn khẳng định đúng. Trong một đường tròn, số đo cung nhỏ bằng
Trong hai cung của một đường tròn hay hai đường tròn bằng nhau, cung nào nhỏ hơn
Cho tam giác $ABC$ đều nội tiếp đường tròn $\left( O \right)$. Tính số đo cung $AC$ lớn.
Cho đường tròn \(\left( {O;R} \right).\) Gọi \(H\) là trung điểm của bán kính \(OA\). Dây \(CD\) vuông góc với \(OA\) tại $H$ . Tính số đo cung lớn \(CD.\)
Cho đường tròn \(\left( O \right)\) đường kính \(AB,\) vẽ góc ở tâm \(\widehat {AOC} = 55^\circ \) . Vẽ dây \(CD\) vuông góc với \(AB\) và dây \(DE\) song song với \(AB.\) Tính số đo cung nhỏ \(BE\)