Cặp số \(\left( {3; - 5} \right)\) là nghiệm của hệ phương trình nào sau đây?
\(\left\{ \begin{array}{l}x - 3y = 1\\x + y = 2\end{array} \right.\)
$\left\{ \begin{array}{l}3x + y = 4\\2x - y = 11\end{array} \right.$
$\left\{ \begin{array}{l}y = - 1\\x - 3y = 5\end{array} \right.$
$\left\{ \begin{array}{l}4x - y = 0\\x - 3y = 0\end{array} \right.$
Cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ.
+) Thay $x = 3;y = - 5$ vào hệ \(\left\{ \begin{array}{l}x - 3y = 1\\x + y = 2\end{array} \right.\) ta được \(\left\{ \begin{array}{l}3 - 3\left( { - 5} \right) = 1\\3 + \left( { - 5} \right) = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}18 = 1\\ - 2 = 2\end{array} \right.\) (vô lý) nên loại A.
+) Thay $x = 3;y = - 5$ vào hệ $\left\{ \begin{array}{l}y = - 1\\x - 3y = 5\end{array} \right.$ ta được $\left\{ \begin{array}{l} - 5 = - 1\\3 - 3.\left( { - 5} \right) = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 5 = - 1\\18 = 5\end{array} \right.$ (vô lý) nên loại C.
+) Thay $x = 3;y = - 5$ vào hệ $\left\{ \begin{array}{l}4x - y = 0\\x - 3y = 0\end{array} \right.$ ta được $\left\{ \begin{array}{l}4.3 - \left( { - 5} \right) = 0\\3 - 3.\left( { - 5} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}17 = 0\\18 = 0\end{array} \right.$ (vô lý) nên loại D.
+) Thay $x = 3;y = - 5$ vào hệ $\left\{ \begin{array}{l}3x + y = 4\\2x - y = 11\end{array} \right.$ ta được $\left\{ \begin{array}{l}3.3 + \left( { - 5} \right) = 4\\2.3 - \left( { - 5} \right) = 11\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4 = 4\\11 = 11\end{array} \right.$ (luôn đúng) nên chọn B.
Đáp án : B
Các bài tập cùng chuyên đề
Hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) có nghiệm duy nhất khi
Hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) (các hệ số khác $0$) vô nghiệm khi
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l} - 2x + y = - 3\\3x - 2y = 7\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}x + y = - 1\\mx + y = 2m\end{array} \right.\) vô nghiệm.
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l}\sqrt 2 x - 2y = 3\\3\sqrt 2 x - 6y = 5\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}mx - 2y = 1\\2x - my = 2{m^2}\end{array} \right.\) có nghiệm duy nhất
Hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9\end{array} \right.\) nhận cặp số nào sau đây là nghiệm
Cho hệ phương trình \(\left\{ \begin{array}{l} - mx + y = - 2m\\x + {m^2}y = 9\end{array} \right..\) Tìm các giá trị của tham số \(m\) để hệ phương trình nhận cặp \(\left( {1;2} \right)\) làm nghiệm.
Cặp số \(\left( { - 2; - 3} \right)\) là nghiệm của hệ phương trình nào sau đây?
Cho hệ phương trình: \(\left\{ \begin{array}{l}3mx + y = - 2m\\ - 3x - my = - 1 + 3m\end{array} \right..\) Xác định các giá trị của tham số \(m\) để hệ phương trình vô số nghiệm.
Bằng cách tìm giao điểm của hai đường thẳng $d: - 2x + y = 3$ và $d':x + y = 5$ ta tìm được nghiệm của hệ phương trình $\left\{ \begin{array}{l} - 2x + y = 3\\x + y = 5\end{array} \right.$ là $\left( {{x_0};{y_0}} \right)$. Tính ${y_0} - {x_0}$.