Đoạn mạch xoay chiều AB có RLC nối tiếp , cuộn dây thuần cảm với CR2 < 2L; điện áp hai đầu đoạn mạch là uAB = U√2cosωt, U ổn định và ω thay đổi . Khi ω = ωC thì điện áp hai đầu tụ C cực đại, khi đó điện áp tức hai đầu đoạn mạch AN ( gồm RL ) và AB lệch pha nhau là α . Giá trị nhỏ nhất của a là :
70,530
900
68,430
120,30
Sử dụng công thức tính \(\tan (a - b) = \frac{{a - b}}{{1 + ab}}\)
Đáp án : A
Các bài tập cùng chuyên đề
Cho đoạn mạch RLC nối tiếp có giá trị các phần tử cố định. Đặt vào hai đầu đoạn này một điện áp xoay chiều có tần số thay đổi. Khi tần số góc của dòng điện bằng \({\omega _0}\) thì cảm kháng và dung kháng có giá trị \({Z_L} = {\rm{ }}100\Omega \) và \({Z_C} = 25\Omega \). Để trong mạch xảy ra cộng hưởng, ta phải thay đổi tần số góc của dòng điện đến giá trị \(\omega \) bằng:
Mạch điện R,L,C nối tiếp, điện áp hai đầu mạch \(u{\rm{ }} = {\rm{ }}220\sqrt 2 cos\omega t\left( V \right)\) và \(\omega \) có thể thay đổi được. Tính điện áp hiệu dụng 2 đầu R khi biểu thức dòng điện có dạng \(i{\rm{ }} = {I_0}cos\omega t\):
Mạch điện R1L1C1 có tần số cộng hưởng \({\omega _1}\) và mạch R2L2C2 có tần số cộng hưởng \({\omega _2}\) , biết \({\omega _1} = {\omega _2}\) . Mắc nối tiếp hai mạch đó với nhau thì tần số cộng hưởng của mạch sẽ là \(\omega \). \(\omega \) liên hệ với \({\omega _1}\) và \({\omega _2}\)theo công thức nào? Chọn đáp án đúng:
Cho mạch điện gồm R, L, C mắc nối tiếp. Cho \(L = \dfrac{1}{\pi }H,{\rm{ }}C = 50\mu F\) và \(R{\rm{ }} = 50\Omega \) . Đặt vào hai đầu mạch điện một điện ápxoay chiều \(u = 220cos(2\pi ft)\left( V \right)\), trong đó tần số f thay đổi được. Khi \(f{\rm{ }} = {\rm{ }}{f_o}\) thì công suất trong mạch đạt giá trị cực đại Pmax. Khi đó:
Đặt điện áp \(u{\rm{ }} = {\rm{ }}U\sqrt 2 cos\left( {2\pi ft} \right)\) vào hai đầu đoạn mạch gồm điện trở thuần R, cuộn cảm thuần L và tụ điện C mắc nối tiếp. Biết U,R,L,C không đổi, f thay đổi được. Khi tần số là 50(Hz) thì dung kháng gấp 1,44 lần cảm kháng. Để công suất tiêu thụ trên mạch cực đại thì phải điều chỉnh tần số đến giá trị bao nhiêu?
Đặt điện \(u{\rm{ }} = {\rm{ }}U\sqrt 2 cos\left( {2\pi ft} \right)\)(U không đổi, tần số f thay đổi được) vào hai đầu đoạn mạch mắc nối tiếp gồm điện trở thuần R, cuộn cảm thuần có độ tự cảm L và tụ điện có điện dung C. Khi tần số là f1 thì cảm kháng và dung kháng của đoạn mạch có giá trị lần lượt là \(6\Omega \) và \(8\Omega \) . Khi tần số là f2 thì hệ số công suất của đoạn mạch bằng $1$. Hệ thức liên hệ giữa f1 và f2 là:
Đặt điện áp xoay chiều \(u{\rm{ }} = {\rm{ }}{U_0}cos\omega t\) có U0 không đổi và ω thay đổi được vào hai đầu đoạn mạch có R, L, C mắc nối tiếp. Thay đổi \(\omega \) thì cường độ dòng điện hiệu dụng trong mạch khi \(\omega = {\omega _1}\) bằng cường độ dòng điện hiệu dụng trong mạch khi \(\omega = {\omega _2}\) . Hệ thức đúng là:
Đoạn mạch xoay chiều RLC, cuộn dây thuần cảm, biết \(L{\rm{ }} = {\rm{ }}C{R^2}\) . Đặt vào hai đầu đoạn mạch điện áp xoay chiều ổn định, với tần số góc \(\omega \) thay đổi, trong mạch có cùng hệ số công suất với hai tần số là \({\omega _1} = 50\pi (rad/s)\) và \({\omega _2} = 200\pi (rad/s)\) . Hệ số công suất của mạch là:
Đoạn mạch xoay chiều RLC nối tiếp , cuộn dây thuần cảm với \(C{R^2} < {\rm{ }}2L\) ; điện áp hai đầu đoạn mạch là \(u{\rm{ }} = {\rm{ }}U\sqrt 2 cos\omega t\) , U ổn định và \(\omega \) thay đổi . Khi \(\omega {\rm{ }} = {\rm{ }}{\omega _C}\) thì điện áp hai đầu tụ C cực đại và điện áp hiệu dụng hai đầu cuộn dây \({U_L} = \dfrac{{{U_R}}}{{10}}\). Hệ số công suất tiêu thụ của cả đoạn mạch là:
Đoạn mạch xoay chiều RLC nối tiếp , cuộn dây thuần cảm với \(C{R^2} < {\rm{ }}2L\) ; điện áp hai đầu đoạn mạch là \(u = U\sqrt 2 cos\omega t\) , U ổn định và \(\omega \) thay đổi . Khi \(\omega {\rm{ }} = {\rm{ }}{\omega _L}\) thì điện áp hai cuộn cảm L cực đại và \({U_{Lmax}} = \dfrac{{41U}}{{40}}\) . Hệ số công suất tiêu thụ của cả đoạn mạch là:
Đặt điện áp xoay chiều u= U0cosωt (U0 không đổi và w thay đổi được) vào hai đầu đoạn mạch gồm điện trở thuần R,cuộn cảm thuần có độ tự cảm L và tụ điện có điện dung C mắc nối tiếp,với CR2< 2L. Khi ω = ω1 hoặc ω = ω2 thì điện áp hiệu dụng giữa hai đầu cuộn cảm có cùng một giá trị.Khi ω = ω0 thì điện áp hiệu dụng giữa hai đầu cuộn cảm có giá trị cực đại.Hệ thức liên hệ giữa ω1, ω2 và ω0 là :
Cho mạch điện xoay chiều RLC mắc nối tiếp. Điện áp xoay chiều đặt vào hai đầu đoạn mạch có biểu thức u= U√2cosωt tần số góc ω biến đổi. Khi ω = ω1=40π (rad/s) và khi ω = ω2 =360π (rad/s) thì cường độ dòng điện hiệu dụng qua mạch điện có giá trị bằng nhau. Để cường độ dòng điện trong mạch đạt giá trị lớn nhất thì tần số góc ω bằng
Một cuộn dây không thuần cảm nối tiếp với tụ điện C thay đổi được trong mạch điện xoay chiều có điện áp u = U0cosωt (V). Ban đầu dung kháng ZC, tổng trở cuộn dây Zd và tổng trở Z toàn mạch bằng nhau và đều bằng \(100Ω\). Tăng điện dung thêm một lượng $\Delta C = \dfrac{{0,{{125.10}^{ - 3}}}}{\pi }$ (F) thì tần số góc dao động riêng của mạch này khi đó là \(80π rad/s\). Tần số góc của nguồn điện xoay chiều bằng:
Đặt điện áp \(u = 200c{\rm{os}}\omega {\rm{t}}\left( V \right)\) (ω thay đổi được) vào hai đầu đoạn mạch mắc nối tiếp gồm cuộn cảm thuần có độ tự cảm L, điện trở R và tụ điện có điện dung C, với CR2<2L. Điện áp hiệu dụng giữa hai bản tụ điện và điện áp hiệu dụng hai đầu cuộn cảm lần lượt là UC , UL phụ thuộc vào ω, chúng được biểu diễn bằng các đồ thị như hình vẽ bên, tương ứng với các đường UC, UL. Giá trị của UM trong đồ thị gần nhất với giá trị nào sau đây?
Mắc vào đoạn mạch RLC không phân nhánh gồm một nguồn điện xoay chiều có tần số thay đổi được. Ở tần số \({f_1} = {\rm{60 Hz,}}\) hệ số công suất đạt cực đại. Ở tần số \({f_2} = 120{\rm{ Hz,}}\) hệ số công suất nhận giá trị \(\cos {\rm{\varphi }} = \dfrac{1}{{\sqrt 2 }}\). Ở tần số \({f_3} = 90{\rm{ Hz,}}\) hệ số công suất của mạch sẽ nhận giá trị
Đặt điện áp xoay chiều có giá trị hiệu dụng không đổi, tần số thay đổi được vào hai đầu đoạn mạch RLC mắc nối tiếp với \(2L > C{R^2}\). Khi f = f1 = 30 Hz hoặc f = f2 = 150 Hz thì điện áp hiệu dụng hai đầu cuộn cảm cùng giá trị. Khi f = f3 = 50 Hz hoặc f = f4 = 200 Hz thì điện áp hiệu dụng hai đầu tụ điện có cùng giá trị. Để \({U_{R\max }}\) thì tần số có giá trị bằng
Cho đoạn mạch RLC mắc nối tiếp. Đặt vào 2 đầu đoạn mạch một điện áp xoay chiều có tần số \(f\) thay đổi được. Khi tần số góc \(\omega = {\omega _0}\) thì cường độ dòng điện hiệu dụng qua đoạn mạch có giá trị cực đại là \({I_{max}}\). Khi tần số góc của dòng điện của dòng điện là \(\omega = {\omega _1}\) hoặc \(\omega = {\omega _2}\) thì dòng điện hiệu dụng trong mạch có giá trị bằng nhau \({I_1} = {I_2} = \dfrac{{{I_{max}}}}{n}\). Biểu thức của điện trở R phụ thuộc vào \(L,{\omega _1},{\omega _2},n\) là
Đặt điện áp \(u = U\sqrt 2 co{\rm{s}}\left( {\omega t + {\varphi _u}} \right)\left( V \right)\) (biết U không đổi và \(\omega \) thay đổi được) vào hai đầu đoạn mạch AB nối tiếp theo thứ tự gồm đoạn AM chứa cuộn cảm thuần có độ tự cảm L, đoạn MN chứa điện trở thuần R và đoạn NB chứa tụ điện có điện dung C. Khi \(\omega = {\omega _1}\) và \(\omega = 2{\omega _1}\) thì biểu thức dòng điện trong mạch lần lượt là \({i_1} = \sqrt 2 co{\rm{s}}\left( {{\omega _1}t + \frac{{5\pi }}{6}} \right)\left( A \right)\) và \({i_2} = 2co{\rm{s}}\left( {{\omega _2}t + \frac{{7\pi }}{{12}}} \right)\left( A \right)\). Biểu thức của dòng điện khi \(\omega = \sqrt 3 {\omega _1}\) là
Đề thi thử THPT chuyên Lam Sơn - 2021
Đặt điện áp \(u = {U_0}cos\omega t\) (với \({U_0}\) không đổi, \(\omega \) thay đổi) vào hai đầu đoạn mạch mắc nối tiếp gồm điện trở R, cuộn cảm thuần có độ tự cảm L và tụ điện có điện dung C. Khi \(\omega = {\omega _0}\) thì trong mạch có cộng hưởng điện. Tần số góc \({\omega _0}\) là