Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:
Liệt kê tất cả các dạng có thể biểu diễn đồ thị hàm số \(y = {x^3} + b{x^2} - x + d\).
(I)
(I) và (II)
(III)
(I) và (IIII)
Nhận xét hệ số \(a\) của hàm số suy ra dáng đồ thị, tính \(y'\) suy ra số cực trị và kết luận.
Hàm số \(y = {x^3} + b{x^2} - x + d\) có hệ số của \({x^3}\) dương nên loại (II).
Xét \(y' = 3{x^2} + 2bx - 1\) có \(\Delta ' = {b^2} + 3 > 0,\forall b \in \mathbb{R}\).
Do đó hàm số có hai cực trị.
Đáp án : A

Các bài tập cùng chuyên đề
Danh sách bình luận