Đề bài

Giá trị nhỏ nhất của hàm số $f\left( x \right) = \dfrac{x}{2} + \dfrac{2}{{x - 1}}$ với $x > 1$ là

  • A.

    \(2\).

  • B.

    \(\dfrac{5}{2}\).

  • C.

    \(2\sqrt 2 \).

  • D.

    \(3\).

Phương pháp giải

Thêm bớt hạng tử rồi sử dụng bất đẳng thức Cô – si cho hai số không âm \(a + b \ge 2\sqrt {ab} \)

Lời giải của GV Loigiaihay.com

$f\left( x \right) = \dfrac{x}{2} + \dfrac{2}{{x - 1}}$

$ = \dfrac{{x - 1}}{2} + \dfrac{2}{{x - 1}} + \dfrac{1}{2}$

$ \ge 2\sqrt {\dfrac{{x - 1}}{2}.\dfrac{2}{{x - 1}}}  + \dfrac{1}{2}$

$ = 2.\sqrt 1 + \frac{1}{2} = \frac{5}{2}$ $\forall x > 1$

$ \Rightarrow f\left( x \right) \ge \dfrac{5}{2}$ $\forall x > 1$.

Dấu "=" xảy ra khi $\frac{{x - 1}}{2} = \frac{2}{{x - 1}} \Leftrightarrow {\left( {x - 1} \right)^2} = 4 $ $\Leftrightarrow x - 1 = 2 \Leftrightarrow x = 3$ (do x>1)

Vậy giá trị nhỏ nhất của $f\left( x \right)$ là $\dfrac{5}{2}$ khi $x = 3$.

Đáp án : B

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề