Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
\(\dfrac{{25}}{3}\)
\( - 1\)
\( - \dfrac{7}{3}\)
\(1\)
+ Tìm ĐKXĐ
+ Nhận thấy \(x = - 2\) không là nghiệm nên ta chia hai vế của phương trình cho \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2}\) , khi đó xuất hiện các hạng tử giống nhau, đặt ẩn phụ, tìm đk của ẩn phụ rồi giải phương trình nhận được.
+ Thay giá trị của ẩn phụ vào cách đặt ta tìm được ẩn ban đầu.
+ Đối chiếu đk rồi kết luận nghiệm.
ĐKXĐ: \(x \ne \pm 1\) .
Ta có:
\(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\)
\(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} + 48.\dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} = 0\)
Với \(x = - 2\) ta có phương trình \(20.{\left( {\dfrac{{ - 4}}{{ - 1}}} \right)^2} = 0\) vô lý \(x = - 2\) không là nghiệm của phương trình.
Lại có với \(x \ne 1;\,\,x \ne - 2\) thì \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} \ne 0,\) ta chia hai vế của phương trình cho \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2}\), ta được:
\(20{\left[ {\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}} \right]^2} + 48\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} - 5 = 0\)
Đặt \(t = \dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\) , ta có
\(20{t^2} + 48t - 5 = 0 \\20{t^2} + 50t - 2t - 5 = 0\\10t\left( {2t + 5} \right) - \left( {2t + 5} \right) = 0 \\\left( {2t + 5} \right)\left( {10t - 1} \right) = 0\)
\(+)\,2t + 5 = 0\\t = - \dfrac{5}{2}\)
\(+)\,10t - 1 = 0\\t = \dfrac{1}{{10}}\)
Với \(t = - \dfrac{5}{2}\) ta có:
$\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = - \dfrac{5}{2}\\2\left( {{x^2} - 3x + 2} \right) = - 5\left( {{x^2} + 3x + 2} \right)\\2{x^2} - 6x + 4 = - 5{x^2} - 15x - 10\\7{x^2} + 9x + 14 = 0\\7\left( {{x^2} + 2.\dfrac{9}{{14}}x + \dfrac{{81}}{{196}}} \right) - \dfrac{{81}}{{28}} + 14 = 0\\7{\left( {x + \dfrac{9}{{14}}} \right)^2} + \dfrac{{311}}{{28}} = 0\,\,\,\left( {VN} \right)\end{array}$
Với \(t = \dfrac{1}{{10}}\) ta có:
\(\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = \dfrac{1}{{10}}\\10\left( {{x^2} - 3x + 2} \right) = {x^2} + 3x + 2\\9{x^2} - 33x + 18 = 0\\3{x^2} - 11x + 6 = 0\\\left( {3x - 2} \right)\left( {x - 3} \right) = 0\)
\(+)\,3x - 2 = 0\\x = \dfrac{2}{3}(TM)\)
\(+)\,x - 3 = 0\\x = 3(TM)\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {3;\,\,\dfrac{2}{3}} \right\}\)
Từ giả thiết suy ra
\({x_1} = \dfrac{2}{3};{x_2} = 3 \\3{x_1} - {x_2} = - 1.\)
Đáp án : B
Các bài tập cùng chuyên đề
Chọn câu sai:
Hãy chọn câu đúng.
Phương trình \(2x + 3 = x + 5\) có nghiệm là:
Phương trình \({x^2} + x = 0\) có số nghiệm là
Phương trình \(2x + k = x - 1\) nhận \(x = 2\) là nghiệm khi
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Hãy chọn bước giải sai đầu tiên cho phương trình\(\dfrac{{x - 1}}{x} = \dfrac{{3x + 2}}{{3x + 3}}\)
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
Số nghiệm của phương trình \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\) là
Điều kiện xác định của phương trình \(1 + \dfrac{x}{{3 - x}} = \dfrac{{5x}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} + \dfrac{2}{{x + 2}}\) là:
Tập nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 1}} - 2 = x\) là
Phương trình \(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\) có tập nghiệm là
Hai biểu thức \(P = \left( {x - 1} \right)\left( {x + 1} \right) + {x^2};\,\,Q = 2x\left( {x - 1} \right)\) có giá trị bằng nhau khi:
Giải phương trình: \(2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\) ta được nghiệm \({x_0}.\) Chọn câu đúng.
Giải phương trình: \(\dfrac{{x + 98}}{2} + \dfrac{{x + 96}}{4} + \dfrac{{x + 65}}{{35}} = \dfrac{{x + 3}}{{97}} + \dfrac{{x + 5}}{{95}} + \dfrac{{x + 49}}{{51}}\) ta được nghiệm là
Số nghiệm của phương trình \(\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\) là
Tập nghiệm của phương trình \(\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\) là
Một hình chữ nhật có chu vi $372m$ nếu tăng chiều dài $21m$ và tăng chiều rộng $10m$ thì diện tích tăng $2862\,{m^2}.$ Chiều dài của hình chữ nhật là:
Tổng hai số là $321.$ Hiệu của $\dfrac{2}{3}$ số này và \(\dfrac{5}{6}\) số kia bằng $34.$ Số lớn là :
Một xe du lịch khởi hành từ A để đến B. Nửa giờ sau, một xe tải xuất phát từ B để về A. Xe tải đi được $1$ giờ thì gặp xe du lịch. Tính vận tốc của mỗi xe, biết rằng xe du lịch có vận tốc lớn hơn xe tải là $10km/h$ và quãng đường $AB$ dài $90km.$