Đề bài

Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\)  ta được các nghiệm là \({x_1};{x_2}\)  với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)

  • A.

    \(\dfrac{{25}}{3}\)                                

  • B.

    \( - 1\)                         

  • C.

    \( - \dfrac{7}{3}\)                              

  • D.

    \(1\)

Phương pháp giải

+ Tìm ĐKXĐ

+ Nhận thấy \(x =  - 2\) không là nghiệm nên ta chia hai vế của phương trình cho \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2}\) , khi đó xuất hiện các hạng tử giống nhau, đặt ẩn phụ, tìm đk của ẩn phụ rồi giải phương trình nhận được.

+ Thay giá trị của ẩn phụ vào cách đặt ta tìm được ẩn ban đầu.

+ Đối chiếu đk rồi kết luận nghiệm.

Lời giải của GV Loigiaihay.com

ĐKXĐ: \(x \ne  \pm 1\) .

Ta có:

\(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\)

\(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} + 48.\dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} = 0\)

Với \(x =  - 2\) ta có phương trình \(20.{\left( {\dfrac{{ - 4}}{{ - 1}}} \right)^2} = 0\) vô lý \(x =  - 2\) không là nghiệm của phương trình.

Lại có với \(x \ne 1;\,\,x \ne  - 2\) thì \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} \ne 0,\) ta chia hai vế của phương trình cho \({\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2}\), ta được:

\(20{\left[ {\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}} \right]^2} + 48\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} - 5 = 0\)

Đặt \(t = \dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\) , ta có

\(20{t^2} + 48t - 5 = 0 \\20{t^2} + 50t - 2t - 5 = 0\\10t\left( {2t + 5} \right) - \left( {2t + 5} \right) = 0 \\\left( {2t + 5} \right)\left( {10t - 1} \right) = 0\)

\(+)\,2t + 5 = 0\\t =  - \dfrac{5}{2}\)

\(+)\,10t - 1 = 0\\t = \dfrac{1}{{10}}\)

Với \(t =  - \dfrac{5}{2}\) ta có:

$\begin{array}{l}\,\,\,\,\,\,\,\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} =  - \dfrac{5}{2}\\2\left( {{x^2} - 3x + 2} \right) =  - 5\left( {{x^2} + 3x + 2} \right)\\2{x^2} - 6x + 4 =  - 5{x^2} - 15x - 10\\7{x^2} + 9x + 14 = 0\\7\left( {{x^2} + 2.\dfrac{9}{{14}}x + \dfrac{{81}}{{196}}} \right) - \dfrac{{81}}{{28}} + 14 = 0\\7{\left( {x + \dfrac{9}{{14}}} \right)^2} + \dfrac{{311}}{{28}} = 0\,\,\,\left( {VN} \right)\end{array}$

Với \(t = \dfrac{1}{{10}}\) ta có:

\(\dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = \dfrac{1}{{10}}\\10\left( {{x^2} - 3x + 2} \right) = {x^2} + 3x + 2\\9{x^2} - 33x + 18 = 0\\3{x^2} - 11x + 6 = 0\\\left( {3x - 2} \right)\left( {x - 3} \right) = 0\)

\(+)\,3x - 2 = 0\\x = \dfrac{2}{3}(TM)\)

\(+)\,x - 3 = 0\\x = 3(TM)\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {3;\,\,\dfrac{2}{3}} \right\}\)

Từ giả thiết suy ra

\({x_1} = \dfrac{2}{3};{x_2} = 3 \\3{x_1} - {x_2} =  - 1.\)

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai:

Xem lời giải >>
Bài 2 :

Hãy chọn câu đúng.

Xem lời giải >>
Bài 3 :

Phương trình \(2x + 3 = x + 5\) có nghiệm là:

Xem lời giải >>
Bài 4 :

Phương trình \({x^2} + x = 0\) có số nghiệm là

Xem lời giải >>
Bài 5 :

Phương trình \(2x + k = x - 1\) nhận \(x = 2\) là nghiệm khi

Xem lời giải >>
Bài 6 :

Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là

Xem lời giải >>
Bài 7 :

Hãy chọn bước giải sai đầu tiên cho phương trình\(\dfrac{{x - 1}}{x} = \dfrac{{3x + 2}}{{3x + 3}}\)

Xem lời giải >>
Bài 8 :

Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)

Xem lời giải >>
Bài 9 :

Số nghiệm của phương trình  \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\)  là

Xem lời giải >>
Bài 10 :

Điều kiện xác định của phương trình \(1 + \dfrac{x}{{3 - x}} = \dfrac{{5x}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} + \dfrac{2}{{x + 2}}\) là:

Xem lời giải >>
Bài 11 :

Tập nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 1}} - 2 = x\) là

Xem lời giải >>
Bài 12 :

Phương trình \(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\) có tập nghiệm là

Xem lời giải >>
Bài 13 :

Hai biểu thức \(P = \left( {x - 1} \right)\left( {x + 1} \right) + {x^2};\,\,Q = 2x\left( {x - 1} \right)\) có giá trị bằng nhau khi:

Xem lời giải >>
Bài 14 :

Giải phương trình: \(2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\)  ta được nghiệm \({x_0}.\) Chọn câu đúng.

Xem lời giải >>
Bài 15 :

Giải phương trình: \(\dfrac{{x + 98}}{2} + \dfrac{{x + 96}}{4} + \dfrac{{x + 65}}{{35}} = \dfrac{{x + 3}}{{97}} + \dfrac{{x + 5}}{{95}} + \dfrac{{x + 49}}{{51}}\) ta được nghiệm là

Xem lời giải >>
Bài 16 :

Số nghiệm của phương trình \(\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\) là

Xem lời giải >>
Bài 17 :

Tập nghiệm của phương trình \(\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\) là

Xem lời giải >>
Bài 18 :

Một hình chữ nhật có chu vi $372m$  nếu tăng chiều dài $21m$  và tăng chiều rộng $10m$  thì diện tích tăng $2862\,{m^2}.$  Chiều dài của hình chữ nhật là:

Xem lời giải >>
Bài 19 :

Tổng hai số là $321.$  Hiệu của $\dfrac{2}{3}$ số này và \(\dfrac{5}{6}\) số kia bằng $34.$  Số lớn là :

Xem lời giải >>
Bài 20 :

Một xe du lịch khởi hành từ A để đến B. Nửa giờ sau, một xe tải xuất phát từ B để về A. Xe tải đi được $1$  giờ thì gặp xe du lịch. Tính vận tốc của mỗi xe, biết rằng xe du lịch có vận tốc lớn hơn xe tải là $10km/h$ và quãng đường $AB$ dài $90km.$

Xem lời giải >>