Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\) là
\(10\)
\( - 10\)
\( - 11\)
\(12\)
Phân tích mẫu thức thành nhân tử rồi sử dụng phương pháp tách hạng tử để giải
\(\dfrac{1}{{\left( {x + a} \right)\left( {x + b} \right)}} = \dfrac{1}{{b - a}}\left( {\dfrac{1}{{x + a}} - \dfrac{1}{{x + b}}} \right),a \ne b\) . Sau đó, làm theo các bước giải phương trình chứa ẩn ở mẫu.
Phân tích các mẫu thành nhân tử sau đó nhân cả 2 vế của phương trình với 2 ta được:
\(\dfrac{1}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{1}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{1}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{1}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{1}{5}\\\dfrac{2}{{\left( {x + 1} \right)\left( {x + 3} \right)}} + \dfrac{2}{{\left( {x + 3} \right)\left( {x + 5} \right)}} + \dfrac{2}{{\left( {x + 5} \right)\left( {x + 7} \right)}} + \dfrac{2}{{\left( {x + 7} \right)\left( {x + 9} \right)}} = \dfrac{2}{5}\)
ĐKXĐ: $x \ne \left\{ { - 1; - 3; - 5; - 7; - 9} \right\}$ .
Khi đó:
\(\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}} + \dfrac{1}{{x + 3}} - \dfrac{1}{{x + 5}} + \dfrac{1}{{x + 5}} - \dfrac{1}{{x + 7}} + \dfrac{1}{{x + 7}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 9}} = \dfrac{2}{5}\\\dfrac{{1\left( {x + 9} \right) - 1\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 9} \right)}} = \dfrac{{2\left( {x + 1} \right)\left( {x + 9} \right)}}{{5\left( {x + 1} \right)\left( {x + 9} \right)}}\\5\left[ {x + 9 - \left( {x + 1} \right)} \right] = 2\left( {x + 1} \right)\left( {x + 9} \right)\\5\left( {x + 9 - x - 1} \right) = 2{x^2} + 20x + 18\\2{x^2} + 20x - 22 = 0 \\{x^2} + 10x - 11 = 0\\{x^2} - x + 11x - 11 = 0 \\\left( {x - 1} \right)\left( {x + 11} \right) = 0\)
Suy ra \(x - 1 = 0\) hoặc \(x + 11 = 0\),
tức là \(x = 1(tm)\) hoặc \(x = - 11(tm)\)
Vậy tổng các nghiệm của phương trình là \(1 + \left( { - 11} \right) = - 10.\)
Đáp án : B

Các bài tập cùng chuyên đề
Bài 1 :
Chọn câu sai:
Phương trình bậc nhất một ẩn có dạng $ax + b = 0,a \ne 0$
Phương trình có một nghiệm duy nhất được gọi là phương trình bậc nhất một ẩn
Trong một phương trình ta có thể nhân cả hai vế với cùng một số khác 0
Phương trình \(3x + 2 = x + 8\) và \(6x + 4 = 2x + 16\) là hai phương trình tương đương.
Bài 2 :
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
Mọi \(x \in R.\)
\(x \ne 1\)
\(x \ne 0;x \ne 1\)
\(x \ne \dfrac{5}{4}\)
Bài 3 :
Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
\(\dfrac{{25}}{3}\)
\( - 1\)
\( - \dfrac{7}{3}\)
\(1\)
Bài 4 :
Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là
\( - 2\)
\(2\)
\(4\)
\(3\)
Bài 5 :
Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền góp mỗi người là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?
Bài 6 :
Giải các phương trình
a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)
b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)
c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)
d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)
Bài 7 :
Một cái sân hình chữ nhật có độ dài của một cạnh như hình vẽ. Ở góc sân, người ta làm một cái bồn hoa hình tròn có bán kính \(x\) mét (\(x > 0\)). Biết vòng tròn tiếp xúc với 2 cạnh của hình chữ nhật và khoảng cách từ cạnh (chiều dài) của hình chữ nhật đến đường tròn là 2 mét (xem hình minh họa). (lấy \(\pi = 3,14\)).
a) Viết biểu thức biểu thị diện tích đất còn lại sau khi đã xây bồn hoa.
b) Hãy tính bán kính của bồn hoa hình tròn biết diện tích đất còn lại sau khi xây bồn hoa là \(54,71{m^2}\).