Đề bài

Giải phương trình \(\sqrt {2{x^2} - 4x + 5}  = x - 2\)  ta được nghiệm là

  • A.

    \(x = 1\)          

  • B.

    \(x = 3\)

  • C.

    \(x = 2\)

  • D.

    Phương trình vô nghiệm

Phương pháp giải

+ Tìm điều kiện

+ Giải phương trình dạng \(\sqrt A  = B\,\left( {B \ge 0} \right) \Leftrightarrow A = {B^2}\)

Lời giải của GV Loigiaihay.com

Điều kiện:

\(x - 2 \ge 0 \Leftrightarrow x \ge 2.\)

Ta có: \(\sqrt {2{x^2} - 4x + 5}  = x - 2\)\( \Leftrightarrow 2{x^2} - 4x + 5 = {\left( {x - 2} \right)^2}\)

\( \Leftrightarrow 2{x^2} - 4x + 5 = {x^2} - 4x + 4 \Leftrightarrow {x^2} + 1 = 0\) \( \Leftrightarrow {x^2} =  - 1\,\) (vô nghiệm vì \({x^2} \ge 0\,\,\forall x\) )

Vậy phương trình vô nghiệm.

Đáp án : D

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề