Đề bài

Cho dòng điện xoay chiều  chạy qua  đoạn mạch AB có sơ đồ  như hình bên, trong đó L là cuộn cảm thuần và X là đoạn mạch xoay chiều. Khi đó, điện áp giữa hai đầu các đoạn mạch AN và MB có biểu thức  lần lượt \({u_{AN}} = 30\sqrt 2 cos\omega t(V);{u_{MB}} = 40\sqrt 2 cos\left( {\omega t - \frac{{\pi {\rm{}}}}{2}} \right)(V)\)

Điện áp hiệu dụng giữa hai đầu đoạn mạch AB có giá trị nhỏ nhất là:

  • A.

    \(16{\rm{ }}V\)

  • B.

    \(50V\)

  • C.

    \(32V\)

  • D.

    \(24V\)

     

Phương pháp giải

Sử dụng giản đồ vecto và hệ thức lượng trong tam giác vuông

Lời giải của GV Loigiaihay.com

\({u_{AN}} = {u_L} + {u_X}\)

\({u_{MB}} = {u_C} + {u_X}\)

\({u_{AB}} = {u_{AN}} + {u_C}\)

\({U_{AB}} \ge OH \to \left( {{U_{AB}}} \right)min = OH\)

Áp dụng hệ thức lượng trong tam giác vuông ta có : \(\frac{1}{{U_{AB}^2}} = \frac{1}{{U_{AN}^2}} + \frac{1}{{U_{MB}^2}} \Rightarrow {U_{AB}} = 24V\)  

Đáp án : D

Các bài tập cùng chuyên đề