Đề bài

Tìm tập hợp tất cả các tham số $m$ sao cho phương trình ${4^{{x^2} - 2x + 1}} - m{.2^{{x^2} - 2x + 2}} + 3m - 2 = 0$ có 4 nghiệm phân biệt.

  • A.

    $\left( { - \infty ;1} \right)$

  • B.

    $\left[ {2; + \infty } \right)$

  • C.

    $\left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)$

  • D.

    $\left( {2; + \infty } \right)$

Phương pháp giải

Đặt ẩn phụ và tìm điều kiện chính xác cho ẩn phụ

Đưa phương trình đã cho về ẩn phụ để biện luận

Lời giải của GV Loigiaihay.com

Đặt $t = {2^{{x^2} - 2x + 1}} \ge 1$, phương trình đã cho trở thành ${t^2} - 2mt + 3m - 2 = 0{\rm{ }}\left( * \right)$

Với $t = 1$ ta tìm được 1 giá trị của $x$

Với $t > 1$ ta tìm được 2 giá trị của $x$

Do đó, phương trình đã cho có 4 nghiệm phân biệt

⇔ Phương trình (*) có 2 nghiệm phân biệt lớn hơn $1$

$\left\{ \begin{array}{l}\Delta ' = {m^2} - \left( {3m - 2} \right) > 0\\\left( {{t_1} - 1} \right) + \left( {{t_2} - 1} \right) > 0\\\left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 3m + 2 > 0\\{t_1} + {t_2} > 2\\{t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 > 0\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 3m + 2 > 0\\2m > 2\\3m - 2 - 2m + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m < 1\end{array} \right.\\m > 1\end{array} \right.$

⇔ $m > 2$

Đáp án : D

Các bài tập cùng chuyên đề