a) Công ty dự kiến thuê hai loại xe: xe 45 chỗ và xe 30 chỗ để chở đoàn khách du lịch. Biết rằng số nhân viên của công ty là 390 người. Nếu tất cả mọi người đi thì tổng số xe cần thuê là 10 chiếc. Hỏi công ty cần thuê bao nhiêu xe mỗi loại?
b) Công ty dự định nếu giá tour là 2 triệu đồng thì sẽ có khoảng 200 người tham gia. Để thu hút nhiều người tham gia, công ty sẽ quyết định giảm giá, cứ mỗi lần giảm giá 100 nghìn đồng/tour thì sẽ có thêm 20 người tham gia. Hỏi công ty phải giảm giá tour còn bao nhiêu để doanh thu từ tour xuyên Việt đó là lớn nhất?
a) Gọi số xe 45 chỗ và số xe 30 chỗ lần lượt là \(x\) (xe) và \(y\) (xe). (\(0 < x,y < 10;x,y \in {\mathbb{N}^*}\))
Viết phương trình biểu diễn tổng số nhân viên của công ty là 390 người và tổng số xe cần thuê là 10 chiếc theo \(x\) và \(y\).
Từ đó lập hệ phương trình.
Giải hệ phương trình để tìm số chiếc xe mỗi loại.
b) Gọi số lần giảm giá 100 nghìn đồng/tour là \(n\) (lần) (\(0 < n < 20\)).
Biểu diễn giá của tour và số người tham gia sau khi giảm \(n\) lần.
Từ đó ta có biểu thức biểu diễn doanh thu của công ty sau khi giảm giá tour \(n\) lần.
Biến đổi biểu thức để tìm giá trị lớn nhất.
Từ đó, tính doanh thu công ty sẽ đạt lớn nhất.
a) Gọi số xe 45 chỗ và số xe 30 chỗ lần lượt là \(x\) (xe) và \(y\) (xe). (\(0 < x,y < 10;x,y \in {\mathbb{N}^*}\))
Số người đi xe 45 chỗ là \(45x\), số người đi xe 30 chỗ là \(30y\). Vì tổng số nhân viên của công ty là 390 người nên ta có phương trình:
\(45x + 30y = 390\) (1)
Vì tổng số xe cần thuê là 10 chiếc nên ta có phương trình:
\(x + y = 10\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ \begin{array}{l}45x + 30y = 390\\x + y = 10\end{array} \right.\)
Giải hệ phương trình ta được \(\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = 4}\end{array}} \right.\) (thỏa mãn điều kiện).
Vậy công ty cần thuê 6 chiếc xe 45 chỗ và 4 chiếc xe 30 chỗ.
b) Đổi 100 nghìn đồng = 0,1 triệu đồng
Gọi số lần giảm giá 100 nghìn đồng/tour là \(n\) (lần) (\(0 < n < 20\)).
Giá của tour sau \(n\) lần giảm là: \(2 - 0,1.n\) (triệu đồng).
Khi đó số người tham gia sau khi giảm \(n\) lần là: \(200 + 20n\;\)(người).
Doanh thu của công ty sau khi giảm giá tour \(n\) lần là:
\(\left( {2 - 0,1n} \right)\left( {200 + 20n} \right) = 20\left( {2 - 0,1n} \right)\left( {10 + n} \right) = 2\left( {20 - n} \right)\left( {10 + n} \right)\)
Xét biểu thức \(A = \left( {20 - n} \right)\left( {10 + n} \right)\)
\(\begin{array}{l}A = \left( {20 - n} \right)\left( {10 + n} \right)\\ = 200 + 10n - {n^2}\\ = 225 - \left( {25 - 10n + {n^2}} \right)\\ = 225 - {\left( {5 - n} \right)^2}\end{array}\)
Vì \({\left( {5 - n} \right)^2} \ge 0\) với mọi n nên \(225 - {\left( {5 - n} \right)^2} \le 225\)
Dấu “=” xảy ra khi \(5 - {n^2} = 0\) suy ra \(n = 5\).
Để doanh thu của công ty sau khi giảm giá tour n lần là lớn nhất thì giá trị biểu thức A phải lớn nhất.
A đạt giá trị lớn nhất khi \(n = 5\).
Khi đó, doanh thu công ty sẽ đạt lớn nhất là \(2.225 = 450\) (triệu đồng).
Vậy giá mỗi tour là \(2 - 0,1.5 = 1,5\) triệu đồng thì doanh thu từ tour của công ty là lớn nhất.

Các bài tập cùng chuyên đề
Bài 1 :
Cho một số có hai chữ số . Nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là $63$. Tổng của số đã cho và số mới tạo thành bằng $99$. Tổng các chữ số của số đó là
$9$
$8$
$7$
$6$
Bài 2 :
Cho một số có hai chữ số. Chữ số hàng chục lớn hơn chữ số hàng đơn vị là $5$. Nếu đổi chỗ hai chữ số cho nhau ta được một số bằng $\dfrac{3}{8}$ số ban đầu. Tìm tích các chữ số của số ban đầu.
$12$
$16$
$14$
$6$
Bài 3 :
Một ô tô đi quãng đường $AB$ với vận tốc $50\,\,km/h$ , rồi đi tiếp quãng đường $BC$ với vận tốc $45km/h.$ Biết quãng đường tổng cộng dài $165\,\,km$ và thời gian ô tô đi trên quãng đường $AB$ ít hơn thời gian đi trên quãng đường $BC$ là $30$ phút. Tính thời gian ô tô đi trên đoạn đường $AB$.
$2$ giờ
$1,5$ giờ
$1$ giờ
$3$ giờ
Bài 4 :
Một ôtô dự định đi từ \(A\) đến \(B\) trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn \(10\,km\) thì đến nơi sớm hơn dự định $3$ giờ, còn nếu xe chạy chậm lại mỗi giờ \(10\,km\) thì đến nơi chậm mất $5$ giờ. Tính vận tốc của xe lúc ban đầu.
$40\,{\rm{km/h}}$
$35\,{\rm{km/h}}$
$50\,{\rm{km/h}}$
$60\,{\rm{km/h}}$
Bài 5 :
Một canô chạy trên sông trong $7$ giờ, xuôi dòng \(108\,km\) và ngược dòng \(63\,km\) . Một lần khác cũng trong 7 giờ canô xuôi dòng \(81\,km\) và ngược dòng \(84\,km\) . Tính vận tốc nước chảy.
$4\,{\rm{km/h}}$
$3\,{\rm{km/h}}$
$2\,{\rm{km/h}}$
$2,5\,{\rm{km/h}}$
Bài 6 :
Hai người đi xe đạp xuất phát đồng thời từ hai thành phố cách nhau \(38\,km\) . Họ đi ngược chiều và gặp nhau sau $2$ giờ. Hỏi vận tốc của người thứ nhất, biết rằng đến khi gặp nhau, người thứ nhất đi được nhiều hơn người thứ hai \(2\,km\) ?
$7\,{\rm{km/h}}$
$8\,{\rm{km/h}}$
$9\,{\rm{km/h}}$
$10\,{\rm{km/h}}$
Bài 7 :
Một khách du lịch đi trên ôtô $4$ giờ, sau đó đi tiếp bằng tàu hỏa trong $7$ giờ được quãng đường dài \(640\,km\). Hỏi vận tốc của tàu hỏa , biết rằng mỗi giờ tàu hỏa đi nhanh hơn ôtô \(5\,km\) ?
$40\,{\rm{km/h}}$
$50\,{\rm{km/h}}$
$60\,{\rm{km/h}}$
$65\,{\rm{km/h}}$
Bài 8 :
Hai vòi nước cùng chảy vào một bể thì sau $4$ giờ $48$ phút bể đầy. Nếu vòi I chảy riêng trong $4$ giờ, vòi II chảy riêng trong $3$ giờ thì cả hai vòi chảy được $\dfrac{3}{4}$ bể. Tính thời gian vòi I một mình đầy bể.
$6$ giờ
$8$ giờ
$10$ giờ
$12$ giờ
Bài 9 :
Hai bạn $A$ và $B$ cùng làm chung một công việc thì hoàn thành sau $6$ ngày. Hỏi nếu $A$ làm một nửa công việc rồi nghỉ thì $B$ hoàn thành nốt công việc trong thời gian bao lâu? Biết rằng nếu làm một mình xong công việc thì $B$ làm lâu hơn $A$ là $9$ ngày.
$9$ ngày
$18$ ngày
$10$ ngày
$12$ ngày
Bài 10 :
Hai xí nghiệp theo kế hoạch phải làm tổng cộng $360$ dụng cụ. Trên thực tế, xí nghiệp $1$ vượt mức $12\% $ , xí nghiệp $2$ vượt mức $10\% $ , do đó cả hai xí nghiệp làm tổng cộng $400$ dụng cụ. Tính số dụng cụ xí nghiệp $2$ phải làm theo kế hoạch
\(160\) dụng cụ
\(200\) dụng cụ.
\(120\) dụng cụ.
\(240\) dụng cụ.
Bài 11 :
Trong tháng đầu hai tổ sản xuất được $800$ sản phẩm. Sang tháng thứ $2$ , tổ $1$ sản xuất vượt mức $12\% $ , tổ $2$ giảm $10\% $ so với tháng đầu nên cả hai tổ làm được $786$ sản phẩm. Tính số sản phẩm tổ $1$ làm được trong tháng đầu.
\(500\) sản phẩm.
\(300\) sản phẩm
\(200\) sản phẩm.
\(400\) sản phẩm.
Bài 12 :
Một tam giác có chiều cao bằng $\dfrac{3}{4}$ cạnh đáy. Nếu chiều cao tăng thêm $3$ $dm$ và cạnh đáy giảm đi $3$ $dm$ thì diện tích của nó tăng thêm $12$ $d{m^2}$ . Tính diện tích của tam giác ban đầu.
$700\,\,d{m^2}$
$678\,\,d{m^2}$
$627\,\,d{m^2}$
$726\,\,d{m^2}$
Bài 13 :
Một khu vườn hình chữ nhật có chu vi bằng $48$ $m.$ Nếu tăng chiều rộng lên bốn lần và tăng chiều dài lên ba lần thì chu vi của khu vườn sẽ là $162$ $m$. Tìm diện tích của khu vườn ban đầu.
$24\,\,{m^2}$
$153\,\,{m^2}$
$135\,\,{m^2}$
$14\,\,{m^2}$
Bài 14 :
Hai giá sách có $450$ cuốn. Nếu chuyển $50$ cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng $\dfrac{4}{5}$ số sách ở giá thứ nhất. Tính số sách trên giá thứ hai.
$150$ cuốn
$300$ cuốn
$200$ cuốn
$250$ cuốn
Bài 15 :
Trên một cánh đồng cấy $60$ ha lúa giống mới và $40$ ha lúa giống cũ, thu hoạch được tất cả $460$ tấn thóc. Hỏi năng suất lúa mới trên $1$ ha là bao nhiêu, biết rằng $3$ ha trồng lúa mới thu hoạch được ít hơn $4$ ha trồng lúa cũ là $1$ tấn.
$5$ tấn
$4$ tấn
$6$ tấn
$3$ tấn
Bài 16 :
Trong một kì thi, hai trường $A,B$ có tổng cộng $350$ học sinh dự thi. Kết quả hai trường đó có $338$ học sinh trúng tuyển. Tính ra thì trường $A$ có \(97\% \) và trường $B$ có \(96 \% \) số học sinh trúng tuyển. Hỏi trường $B$ có bao nhiêu học sinh dự thi.
$200$ học sinh
$150$ học sinh
$250$ học sinh
$225$ học sinh
Bài 17 :
Một mảnh đất hình chữ nhật có chu vi bằng $42$ m. Đường chéo hình chữ nhật dài $15$ m. Tính độ dài chiều rộng mảnh đất hình chữ nhật.
$10\,\,m$
$12\,\,m$
$9\,\,m$
$8\,\,m$
Bài 18 :
Trên quãng đường \(AB\) dài \(210\) km , tại cùng một thời điểm một xe máy khởi hành từ \(A\) đến \(B\) và một ôt ô khởi hành từ \(B\) đi về \(A\). Sau khi gặp nhau, xe máy đi tiếp $4$ giờ nữa thì đến \(B\) và ô tô đi tiếp $2$ giờ $15$ phút nữa thì đến \(A\). Biết rằng vận tốc ô tô và xe máy không thay đổi trong suốt chặng đường. Vận tốc của xe máy và ô tô lần lượt là
\(20\,km/h;\,30\,km/h\)
\(30\,km/h;\,40\,km/h\)
\(40\,km/h;\,30\,km/h\)
\(45\,km/h;\,35\,km/h\)
Bài 19 :
Một ca nô đi từ A đến B với vận tốc và thời gian dự định. Nếu ca nô tăng vận tốc thêm $3$ km/h thì thời gian rút ngắn được $2h.$ Nếu ca nô giảm vận tốc đi $3$ km/h thì thời gian tăng $3h.$ Tính vận tốc và thời gian dự định của ca nô.
$10$ km/h và $10h$
$15$ km/h và $12h$
$20$ km/h và $8h$
$15$ km/h và $11h$
Bài 20 :
Cho một số có hai chữ số . Nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là $18$. Tổng của số đã cho và số mới tạo thành bằng $66$. Tổng các chữ số của số đó là
$9$
$8$
$7$
$6$
Bài 21 :
Cho một số có hai chữ số . Chữ số hàng chục lớn hơn chữ số hàng đơn vị là $6$. Nếu đổi chỗ hai chữ số cho nhau ta được một số bằng $\dfrac{{13}}{{31}}$ số ban đầu. Tìm tích các chữ số của số ban đầu.
$27$
$12$
$36$
$9$
Bài 22 :
Một ô tô đi quãng đường $AB$ với vận tốc $52\,\,km/h$ , rồi đi tiếp quãng đường $BC$ với vận tốc $42km/h.$ Biết quãng đường tổng cộng dài $272\,\,km$ và thời gian ô tô đi trên quãng đường $AB$ ít hơn thời gian đi trên quãng đường $BC$ là $2$ giờ. Tính thời gian ô tô đi trên đoạn đường $BC$.
$2$ giờ
$4$ giờ
$1$ giờ
$3$ giờ
Bài 23 :
Một xe đạp dự định đi từ \(A\) đến \(B\) trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn \(10\,km\) thì đến nơi sớm hơn dự định $1$ giờ, còn nếu xe chạy chậm lại mỗi giờ \(5\,km\) thì đến nơi chậm mất $2$ giờ. Tính vận tốc của xe lúc ban đầu.
$8\,{\rm{km/h}}$
$12\,{\rm{km/h}}$
$10\,{\rm{km/h}}$
$20\,{\rm{km/h}}$
Bài 24 :
Một chiếc canô đi xuôi dòng theo một khúc sông trong 3 giờ và đi ngược dòng trong 4 giờ, được \(380\,km\) . Một lần khác canô này xuôi dòng trong 1 giờ và ngược dòng trong vòng 30 phút được \(85\,km\) . Hãy tính vận tốc của dòng nước ( vận tốc thật của canô và vận tốc dòng nước ở hai lần là như nhau ).
$5\,{\rm{km/h}}$
$3\,{\rm{km/h}}$
$2\,{\rm{km/h}}$
$2,5\,{\rm{km/h}}$
Bài 25 :
Hai người đi xe máy xuất phát đồng thời từ hai thành phố cách nhau \(225\,km\) . Họ đi ngược chiều và gặp nhau sau $3$ giờ. Hỏi vận tốc của người thứ nhất, biết rằng vận tốc người thứ nhất lớn hơn người thứ hai \(5\,km/h\) ?
$40\,{\rm{km/h}}$
$35\,{\rm{km/h}}$
$45\,{\rm{km/h}}$
$50\,{\rm{km/h}}$
Bài 26 :
Một khách du lịch đi trên ôtô $5$ giờ, sau đó đi tiếp bằng xe máy trong $3$ giờ được quãng đường dài \(330\,km\). Hỏi vận tốc của ô tô , biết rằng mỗi giờ xe máy đi chậm hơn ôtô \(10\,km\) ?
$40\,{\rm{km/h}}$
$50\,{\rm{km/h}}$
$35\,{\rm{km/h}}$
$45\,{\rm{km/h}}$
Bài 27 :
Hai vòi nước cùng chảy vào 1 bể không có nước thì sau 1,5h sẽ đầy bể. Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong \(\dfrac{1}{3}\) h thì được \(\dfrac{1}{5}\) bể. Hỏi nếu vòi 2 chảy riêng thì bao lâu đầy bể?
$2,5h$
$2h$
$3h$
$4h$
Bài 28 :
Hai bạn $A$ và $B$ cùng làm chung một công việc thì hoàn thành sau $8$ ngày. Hỏi nếu $A$ làm riêng hết \(\dfrac{1}{3}\) công việc rồi nghỉ thì $B$ hoàn thành nốt công việc trong thời gian bao lâu ? Biết rằng nếu làm một mình xong công việc thì $A$ làm nhanh hơn B là $12$ ngày.
$16$ ngày
$18$ ngày
$10$ ngày
$12$ ngày
Bài 29 :
Năm ngoái, cả 2 cánh đồng thu hoạch được $500$ tấn thóc. Năm nay, do áp dụng khoa học kĩ thuật nên lượng lúa thu được trên cánh đồng thứ nhất tăng lên $30\% $ so với năm ngoái, trên cánh đồng thứ hai tăng $20\% $. Do đó tổng cộng cả 2 cánh đồng thu được $630$ tấn thóc. Hỏi trên mỗi cánh đồng năm nay thu được bao nhiêu tấn thóc?
$400$ tấn và $230$ tấn
$390$ tấn và $240$ tấn
$380$ tấn và $250$ tấn
Tất cả đều sai
Bài 30 :
Tháng thứ nhất, 2 tổ sản xuất được 1200 sản phẩm. Tháng thứ hai, tổ I vượt mức $30\% $ và tổ II bị giảm năng suất $22\% $ so với tháng thứ nhất. Vì vậy 2 tổ đã sản xuất được 1300 sản phẩm. Hỏi tháng thứ hai tổ 2 sản xuất được bao nhiêu sản phẩm?
$400$ sản phẩm
$450$ sản phẩm
$390$ sản phẩm
$500$ sản phẩm