
Tìm công thức hàm số của parabol (P) bằng cách chọn hệ trục tọa độ phù hợp, thay tọa độ các điểm đồ thị đi qua vào công thức tổng quát.
Tìm tọa độ A, B bằng cách giải phương trình hoành độ giao điểm của hàm số với trục hoành. Tính khoảng cách AB.

Gắn hệ trục tọa độ Oxy như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right):y = a{x^2} + bx + c\) với \(a < 0\).
Do parabol \((P)\) đối xứng qua trục tung nên có trục đối xứng \(x = 0 \Rightarrow - \frac{b}{{2a}} = 0 \Leftrightarrow b = 0\) .
Chiều cao của cổng parabol là 4m nên \(G\left( {0;4} \right) \Rightarrow c = 4\)
\( \Rightarrow \left( P \right):y = a{x^2} + 4\).
Lại có, kích thước cửa ở giữa là 3m x 4m nên \(E\left( {2;3} \right) \Rightarrow 3 = 4a + 4 \Rightarrow a = - \frac{1}{4}\) .
Vậy \(\left( P \right):y = - \frac{1}{4}{x^2} + 4\).
Ta có \( - \frac{1}{4}{x^2} + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\) nên \(A\left( { - 4;0} \right);B\left( {4;0} \right)\) hay \(AB = 8\).

Các bài tập cùng chuyên đề