Đề bài

 Tìm diện tích lớn nhất của hình chữ nhật \(MNPQ\) nội tiếp trong nửa đường tròn \(\left( O \right)\) bán kính \(10cm,\) biết một cạnh của hình chữ nhật nằm dọc trên đường kính của đường tròn (như hình vẽ).

Phương pháp giải

Gọi \(x\left( {cm} \right)\) là độ dài cạnh hình chữ nhật không nằm dọc theo đường kính đường tròn \(\left( {0 < x < 10} \right)\)

Khi đó áp dụng định lí Pythagore để tính OQ theo \(x\), ta tính được \(MQ = 2.OQ\).

Tính diện tích hình chữ nhật MNPQ theo \(x\).

Áp dụng bất đẳng thức Cauchy cho 2 số: \(2\sqrt {ab} \le a + b\). Dấu bằng xảy ra khi \(a = b \ge 0\)

Dấu “=” xảy ra khi là diện tích lớn nhất của hình chữ nhật.

 

Lời giải của GV Loigiaihay.com

Gọi \(x\left( {cm} \right)\) là độ dài cạnh hình chữ nhật không nằm dọc theo đường kính đường tròn \(\left( {0 < x < 10} \right)\)

Áp dụng định lí Pythagore trong tam giác OPQ, ta có:

\(OQ = \sqrt {O{P^2} - P{Q^2}} = \sqrt {{{10}^2} - {x^2}} \)

Khi đó độ dài cạnh MQ của hình chữ nhật nằm dọc trên đường kính của đường tròn là:

\(MQ = 2.OQ = 2\sqrt {{{10}^2} - {x^2}} \left( {cm} \right)\)

Diện tích hình chữ nhật MNPQ là:

\(S = x.2\sqrt {100 - {x^2}} = 2\sqrt {{x^2}.\left( {100 - {x^2}} \right)} \left( {c{m^2}} \right)\)

Áp dụng bất đẳng thức Cauchy cho hai số, ta có:

\(2\sqrt {{x^2}.\left( {100 - {x^2}} \right)} \le {x^2} + 100 - {x^2} = 100\).

Dấu “=” xảy ra khi \({x^2} = 100 - {x^2}\)

Suy ra \(2{x^2} = 100\)

\({x^2} = 50\)

\(x = 5\sqrt 2 \) (vì \(x > 0\))

Vậy diện tích lớn nhất của hình chữ nhật là \(100c{m^2}\) khi \(x = 5\sqrt 2 \left( {cm} \right)\).

Xem thêm : Đề thi vào 10 môn Toán

Các bài tập cùng chuyên đề

Bài 1 :

Cho biểu thức \(P = \dfrac{{2x}}{{\sqrt x  + 1}}\). Giá trị của $P$ khi $x = 9$ là

  • A.

    $\dfrac{9}{2}$

  • B.

    $\dfrac{9}{4}$

  • C.

    $9$

  • D.

    $18$

Xem lời giải >>

Bài 2 :

Cho biểu thức \(P = \dfrac{x}{{\sqrt x  + 1}}\). Giá trị của $P$ khi $x = \dfrac{2}{{2 - \sqrt 3 }}$ là

  • A.

    $4$

  • B.

    $2$

  • C.

    $3$

  • D.

    $1$

Xem lời giải >>

Bài 3 :

Cho biểu thức \(P = \dfrac{{\sqrt x  + 1}}{{\sqrt x  - 2}}\).

Giá trị của $P$ khi $x = 3 + 2\sqrt 2 $ là:

  • A.

    $4 + 3\sqrt 2 $

  • B.

    $4 - 3\sqrt 2 $

  • C.

    $3$

  • D.

    $3\sqrt 2 $

Xem lời giải >>

Bài 4 :

Cho biểu thức \(P = \dfrac{{x + 2\sqrt x  + 2}}{{\sqrt x }}\)với $x > 0$. So sánh $P$ với $4$.

  • A.

    $P > 4$

  • B.

    $P < 4$

  • C.

    $P = 4$

  • D.

    $P \le 4$

Xem lời giải >>

Bài 5 :

Cho biểu thức \(P = \dfrac{{3\sqrt x  - 1}}{{\sqrt x  + 1}}\)với $x \ge 0$. Tìm $x$ biết $P = \sqrt x $ .

  • A.

    $1$

  • B.

    $2$

  • C.

    $3$

  • D.

    $4$

Xem lời giải >>

Bài 6 :

Giá trị của biểu thức  \(2\sqrt {\dfrac{{16a}}{3}}  - 3\sqrt {\dfrac{a}{{27}}}  - 6\sqrt {\dfrac{{4a}}{{75}}} \) là

  • A.

    $\dfrac{{23\sqrt {3a} }}{{15}}$

  • B.

    $\dfrac{{\sqrt {3a} }}{{15}}$

  • C.

    $\dfrac{{23\sqrt a }}{{15}}$

  • D.

    $\dfrac{{3\sqrt {3a} }}{{15}}$

Xem lời giải >>

Bài 7 :

Rút gọn biểu thức  $E = \dfrac{{a - b}}{{2\sqrt a }}\sqrt {\dfrac{{ab}}{{{{(a - b)}^2}}}} $ với $0 < a < b$ ta được

  • A.

    $\dfrac{{\sqrt a }}{2}$

  • B.

    $\dfrac{{\sqrt b }}{2}$

  • C.

    $\dfrac{{ - \sqrt b }}{2}$

  • D.

    $a\sqrt b $

Xem lời giải >>

Bài 8 :

Rút gọn biểu thức  $4{a^4}{b^2}.\sqrt {\dfrac{9}{{{a^8}{b^4}}}} $ với $ab \ne 0$ ta được

  • A.

    $\dfrac{{{a^2}}}{b}$

  • B.

    $12$

  • C.

    $6$

  • D.

    $36$

Xem lời giải >>

Bài 9 :

Cho biểu thức $A = \dfrac{{\sqrt x  + 1}}{{\sqrt x  - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x  + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}$ với $x \ge 0;x \ne 4$

Xem lời giải >>

Bài 10 :

Cho biểu thức

$B = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}$ với $x \ge 0;x \ne 1$

Xem lời giải >>

Bài 11 :

Cho biểu thức $C = \dfrac{{2\sqrt x  - 9}}{{x - 5\sqrt x  + 6}} - \dfrac{{\sqrt x  + 3}}{{\sqrt x  - 2}} - \dfrac{{2\sqrt x  + 1}}{{3 - \sqrt x }}$

với $x \ge 0;x \ne 4;x \ne 9$.

Xem lời giải >>

Bài 12 :

Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x  - 1}}\) với \(x \ge 0;x \ne 1\). Giá trị của \(P\) khi \(x = 4\) là:

  • A.

    \(4\)

  • B.

    \(2\)

  • C.

    \(-2\)

  • D.

    \(\dfrac{2}{3}\)

Xem lời giải >>

Bài 13 :

Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x  - 1}}\) với \(x \ge 0;x \ne 1\). Giá trị của \(P\) khi \(x = \dfrac{8}{{3 - \sqrt 5 }}\) là:

  • A.

    \(5 + \sqrt 5 \)

  • B.

    \(5\)

  • C.

    \(\dfrac{{5 + \sqrt 5 }}{5}\)

  • D.

    \(\sqrt 5 \)

Xem lời giải >>

Bài 14 :

Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x  - 2}}\) với \(x \ge 0;x \ne 4\) . Giá trị của \(P\) khi \(x\)  thỏa mãn phương trình \({x^2} - 5x + 4 = 0\).

  • A.

    \( - \dfrac{1}{2}\)

  • B.

    \(\sqrt 2 \)

  • C.

    \( - 1\)            

  • D.

    Không tồn tại giá trị \(P.\)

Xem lời giải >>

Bài 15 :

Cho biểu thức \(A = \dfrac{{2\sqrt x  + 1}}{{\sqrt x  + 1}}\)với \(x \ge 0\). So sánh \(A\) với \(2\).

  • A.

    \(A > 2\)

  • B.

    \(A < 2\)

  • C.

    \(A = 2\)

  • D.

    \(A \ge 2\)

Xem lời giải >>

Bài 16 :

Cho biểu thức \(B = \dfrac{{\sqrt x  + 3}}{{\sqrt x  + 2}}\)với \(x \ge 0\). So sánh \(A\) với \(1\).

  • A.

    \(B > 1\)

  • B.

    \(B < 1\)

  • C.

    \(B = 1\)

  • D.

    \(B \le 1\)

Xem lời giải >>

Bài 17 :

Cho biểu thức \(A = \dfrac{{\sqrt x  + 1}}{{\sqrt x  - 2}}\) với \(x \ge 0;x \ne 4\). Tìm các giá trị của \(x\) biết \(A = \dfrac{{\sqrt x  - 1}}{2}\) .

  • A.

    \(x = 0;x = 5\)

  • B.

    \(x = 0\)

  • C.

    \(x = 0;x = 25\)

  • D.

    \(x = 5;x = 1\)

Xem lời giải >>

Bài 18 :

Rút gọn biểu thức  \(5\sqrt a  + 6\sqrt {\dfrac{a}{4}}  - a\sqrt {\dfrac{4}{a}}  + 5\sqrt {\dfrac{{4a}}{{25}}} \) với \(a > 0,\) ta được kết quả là:

  • A.

    \(12\sqrt a \)

  • B.

    \(8\sqrt a \)

  • C.

    \(6\sqrt a \)

  • D.

    \(10\sqrt a \)

Xem lời giải >>

Bài 19 :

Cho biểu thức \(P = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{4 - x}}} \right):\left( {\dfrac{{\sqrt x  - 1}}{{x - 2\sqrt x }} - \dfrac{2}{{\sqrt x }}} \right)\) với \(x \ge 0;x \ne 4;x \ne 9\)

Xem lời giải >>

Bài 20 :

Cho biểu thức \(C = \left( {\dfrac{{\sqrt x }}{{\sqrt x  - 1}} + \dfrac{2}{{x - \sqrt x }}} \right):\dfrac{1}{{\sqrt x  - 1}}\) với \(x > 0;x \ne 1\)

Xem lời giải >>

Bài 21 :

Cho biểu thức \(P = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}}  - 1}} - \dfrac{1}{{\sqrt x  - 1}}} \right):\left( {1 - \dfrac{{x + 4}}{{x + \sqrt x  + 1}}} \right)\)

Xem lời giải >>

Bài 22 :

Cho \(A = \dfrac{{2\sqrt x  - 1}}{{\sqrt x  + 2}}\) với \(x \ge 0.\) Có bao nhiêu giá trị của \(x\) để \(A\) có giá trị nguyên.

  • A.

    \(2\)     

  • B.

    \(1\)     

  • C.

    \(0\)     

  • D.

    \(3\)     

Xem lời giải >>

Bài 23 :

Rút gọn biểu thức  \(D = \dfrac{{2\left( {a + b} \right)}}{{\sqrt b }}\sqrt {\dfrac{b}{{{a^2} + 2ab + {b^2}}}} \) với \(a,b > 0\) ta được:

  • A.

    \(a + b\)

  • B.

    \(2\)

  • C.

    \(\dfrac{{\sqrt b }}{2}\)

  • D.

    \(2\sqrt b \)

Xem lời giải >>

Bài 24 :

Rút gọn biểu thức  \(\dfrac{{{a^2}}}{{11}}.\sqrt {\dfrac{{121}}{{{a^4}{b^{10}}}}} \) với \(ab \ne 0\) ta được:

  • A.

    \(\dfrac{1}{{\left| {{b^5}} \right|}}\)

  • B.

    \(\dfrac{1}{{{b^5}}}\)

  • C.

    \({b^5}\)

  • D.

    \(\dfrac{{11}}{{{b^5}}}\)

Xem lời giải >>

Bài 25 :

Với \(y < 0 < x\), so sánh \(A = 2\left( {x - y} \right)x{y^3}.\dfrac{{\sqrt {{x^2}{y^3}} }}{{\sqrt {{x^4}{y^5}{{\left( {x - y} \right)}^2}} }}\) và \(0.\)

  • A.
    \(A < 0\)
  • B.
    \(A > 0\)
  • C.
    \(A \ge 0\)
  • D.

    Đáp án khác

Xem lời giải >>

Bài 26 :

Với \(a,b > 0\), biểu thức \(3a{b^2}.\sqrt {\dfrac{{{b^2}}}{{{a^4}}}} \) bằng:

  • A.

    \(\dfrac{{ - 3{b^2}}}{a}\)

  • B.

    \(\dfrac{{3{b^2}}}{a}\)

  • C.

    \(\dfrac{{3{b^3}}}{a}\)

  • D.

    \(\dfrac{{ - 3{b^3}}}{a}\)

Xem lời giải >>

Bài 27 :

Cho \(Q = \dfrac{{x + \sqrt x  + 1}}{{\sqrt x }}\). Tìm \(x\) để \(Q = 3\)

  • A.
    \(x =  \pm 1\)  
  • B.
    \(x = 1\)         
  • C.
    \(x =  - 1\)
  • D.
    Kết quả khác
Xem lời giải >>

Bài 28 :

Rút gọn rồi tính giá trị của biểu thức  \(Q = \dfrac{{2x - 3\sqrt x  - 2}}{{\sqrt x  - 2}}\) tại \(x = 2020 - 2\sqrt {2019} \)

  • A.
    \(Q = 2\sqrt x  + 1\,\,\,;\,\,\,2\sqrt {2019}  - 1\)
  • B.
    \(Q = 2\sqrt x  - 1\,\,\,;\,\,\,2\sqrt {2019}  - 3\)
  • C.
    \(Q = \sqrt x  - 2\,\,\,;\,\,\,\sqrt {2019}  - 3\)
  • D.
    \(Q = \sqrt x  + 2\,\,\,;\,\,\,\sqrt {2019}  + 1\)
Xem lời giải >>

Bài 29 :

Cho các biểu thức : \(P = \left( {\dfrac{{3\sqrt x }}{{x\sqrt x  + 1}} - \dfrac{{\sqrt x }}{{x - \sqrt x  + 1}} + \dfrac{1}{{\sqrt x  + 1}}} \right):\dfrac{{\sqrt x  + 3}}{{x - \sqrt x  + 1}}\,\,\,\left( {x \ge 0} \right)\)

Rút gọn biểu thức \(P.\) Tìm các giá trị của \(x\) để \(P \ge \dfrac{1}{5}\).

  • A.

    \(P = \dfrac{1}{\sqrt{x} + 3}\,\,;\,\,0 \le x \le 4\)

  • B.

    \(P = \dfrac{1}{\sqrt{x} + 3}\,\,;\,\,0 \le x \le 2\)

  • C.

    \(P = \dfrac{1}{\sqrt{x} + 1}\,\,;\,\,0 \le x \le 2\)

  • D.

    \(P = \dfrac{1}{\sqrt{x} + 1}\,\,;\,\,0 \le x \le 4\)

Xem lời giải >>

Bài 30 :

Cho căn thức \(\sqrt {{x^2} - 4x + 4} .\)

a) Hãy chứng tỏ rằng căn thức xác định với mọi giá trị của x.

b) Rút gọn căn thức đã cho với \(x \ge 2.\)

c) Chứng tỏ rằng với mọi \(x \ge 2,\) biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.

Xem lời giải >>