Tìm x, biết:
a) \(5\frac{3}{4} + \frac{1}{4}:x = 5\frac{1}{2}\)
b) \(\left| {x - \frac{3}{2}} \right| = \frac{7}{{12}}\)
Áp dụng quy tắc chuyển vế đổi dấu.
b) Đưa về dạng \(\left| A \right| = B\), chia hai trường hợp: A = B hoặc A = -B.
a) \(5\frac{3}{4} + \frac{1}{4}:x = 5\frac{1}{2}\)
\(\begin{array}{l}\frac{1}{4}:x = 5\frac{1}{2} - 5\frac{3}{4}\\\frac{1}{4}:x = \frac{1}{2} - \frac{3}{4}\\\frac{1}{4}:x = \frac{{ - 1}}{4}\\x = \frac{1}{4}:\frac{{ - 1}}{4}\\x = - 1\end{array}\)
Vậy \(x = - 1\)
b) \(\left| {x - \frac{3}{2}} \right| = \frac{7}{{12}}\)
\(x - \frac{3}{2} = \frac{7}{{12}}\) hoặc \(x - \frac{3}{2} = - \frac{7}{{12}}\)
\(x = \frac{7}{{12}} + \frac{3}{2}\) hoặc \(x = - \frac{7}{{12}} + \frac{3}{2}\)
\(x = \frac{{25}}{{12}}\) hoặc \(x = \frac{{11}}{{12}}\)
Vậy \(x \in \left\{ {\frac{{25}}{{12}};\frac{{11}}{{12}}} \right\}\)
Các bài tập cùng chuyên đề
Thực hiện phép tính:
a) \( - 0,5 + \frac{3}{4}\)
b) \({\left( { - \frac{2}{3}} \right)^2}.\frac{9}{{16}} + \sqrt {\frac{4}{{81}}} :\frac{{16}}{9} - \left| { - \frac{9}{{16}}} \right|.\frac{2}{3}\)
Tìm \(x\), biết:
a) \(\frac{4}{3} + x = \frac{{ - 1}}{6}\)
b) \(2\left| {\frac{4}{5} - 2x} \right| + \frac{3}{5} = 3\)
a) Thực hiện phép tính: \(\frac{2}{3} + \left( { - \frac{3}{2}} \right).\left( { - \frac{4}{{10}}} \right)\)
b) Làm tròn số \( - 4,3615\) với độ chính xác \(d = 0,05\)
Giá trị của biểu thức \(\sqrt {0,25} - \left| { - 0,2} \right|\) là: