Cho \(\Delta ABC\) vuông tại A (AB < AC) có I là trung điểm BC. Gọi K là điểm đối xứng của A qua I.
a) Chứng minh ABKC là hình chữ nhật.
b) Gọi D, E lần lượt là trung điểm AB và BK. Chứng minh rằng ID \( \bot \)AB và \(DI = \frac{1}{2}BK\)
c) Qua I vẽ đường thẳng vuông góc với BI tại I và cắt BA, BK lần lượt tại F và G. Gọi H, J lần lượt là trung điểm của FI và IG. Chứng minh rằng DH // EJ.
a) Chứng minh ABKC là hình bình hành có một góc vuông.
b) Chứng minh tam giác AIB cân tại I nên ID là đường cao của tam giác AIB.
Từ đó chứng minh BDIE là hình chữ nhật (tứ giác có 3 góc vuông) nên DI = BE.
Mà E là trung điểm của BK nên suy ra \(DI = \frac{1}{2}BK\).
c) Gọi L là trung điểm của FG. Chứng minh DH // BL và và BL // EJ nên DH // EJ.
a) Xét tứ giác ABKC có:
AK và BC cắt nhau tại I
I là trung điểm của AK ( K đối xứng với A qua I)
I là trung điểm của BC
Suy ra ABKC là hình bình hành
Mà tam giác ABC vuông tại A nên \(\widehat A = 90^\circ \), suy ra ABKC là hình chữ nhật.
b) Vì ABCD là hình chữ nhật nên AI = IB, suy ra tam giác AIB cân tại I.
Vì D là trung điểm của AB nên ID là đường trung tuyến của tam giác AIB, do đó ID đồng thời là đường cao của tam giác AIB nên \(ID \bot AB\) hay \(\widehat {IDB} = 90^\circ \).
Chứng minh tương tự ta có \(IE \bot BK\) hay \(\widehat {BEI} = 90^\circ \).
ABCD là hình chữ nhật nên \(\widehat {DBE} = 90^\circ \).
Xét tứ giác BDIE, ta có:
\(\widehat {IDB} = \widehat {DBE} = \widehat {BEI} = 90^\circ \) nên BDIE là hình chữ nhật. Do đó ID = BE.
Mà BE = EK = \(\frac{1}{2}\)BK nên ID = \(\frac{1}{2}\)BK.
c) Xét tam giác vuông FDI có H là trung điểm của FI nên DH là đường trung tuyến ứng với cạnh huyền của tam giác FDI.
Do đó DH = FH, suy ra tam giác DHF cân tại H. Từ đó suy ra \(\widehat {DFH} = \widehat {FDH}\) (1).
Chứng minh tương tự, ta có tam giác FLB cân tại L, suy ra \(\widehat {BFL} = \widehat {FBL}\) (2).
Từ (1) và (2) suy ra \(\widehat {FDH} = \widehat {FBL}\). Mà hai góc này ở vị trí đồng vị nên DH // BL (3).
Chứng minh tương tự, ta được BL // EJ (4).
Từ (3) và (4) suy ra DH // EJ.
Các bài tập cùng chuyên đề
Xét một điểm M trên cạnh huyền của tam giác ABC vuông cân tại A. Gọi N và P lần lượt là hình chiếu vuông góc của M trên các cạnh AB và AC.
a) Hỏi tứ giác MPAN là hình gì?
b) Hỏi M ở vị trí nào thì đoạn thẳng NP có độ dài ngắn nhất? Vì sao?
Cho tam giác ABC cân tại A; M là một điểm thuộc đường thẳng BC, B ở giữa M và C. Gọi E và K lần lượt là chân đường vuông góc hạ từ M và từ B xuống AC, còn N, D lần lượt là chân đường vuông góc hạ từ B xuống ME và từ M xuống AB. (H.3.60)
Chứng minh rằng:
a) Tứ giác BKEN là hình chữ nhật
b) BK và NE cùng bằng hiệu khoảng cách từ M đến AC và AB (dù M thay đổi trên đường thẳng MC miễn là B nằm giữa M và C)
Cho tam giác ABC vuông tại A có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh tứ giác ABCD là hình chữ nhật và \(AM = \dfrac{1}{2}BC\).
Cho hình chữ nhật ABCD có điểm E nằm trên cạnh CD sao cho \(\widehat {A{\rm{E}}B} = {78^o};\widehat {EBC} = {39^o}\). Tính số đo của \(\widehat {BEC}\) và \(\widehat {E{\rm{A}}B}\).
Hình chữ nhật ABCD có O là giao điểm của hai đường chéo AC và BD. Hãy tìm độ dài thích hợp cho các ô \(?\) trong bảng dưới đây:
Xét một điểm M trên cạnh huyền của tam giác ABC vuông cân tại A. Gọi N và P lần lượt là hình chiếu vuông góc của M trên các cạnh AB và AC.
a) Hỏi tứ giác MPAN là hình gì?
b) Hỏi M ở vị trí nào thì đoạn thẳng NP có độ dài ngắn nhất? Vì sao?
Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE.
a) Chứng minh AHBD, AHCE, BCED là những hình chữ nhật.
b) Tại sao giao điểm của BE và CD là trung điểm của AH?
c) Giải thích tại sao \(DH = HE,BE = CD\).