Đề bài

Một vật đang ở vị trí O chịu hai lực tác dụng ngược chiều nhau là \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \), trong đó độ lớn lực \(\overrightarrow {{F_2}} \)lớn gấp ba lần độ lớn lực \(\overrightarrow {{F_1}} \). Để giữ đứng yên, người ta cần tác dụng thêm hai lực \(\overrightarrow {{F_3}} \) và \(\overrightarrow {{F_4}} \), mỗi lực có độ lớn bằng 30 N và hợp với \(\overrightarrow {{F_1}} \) một góc \({30^o}\). Tính tổng độ lớn của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) (làm tròn kết quả đến hàng phần mười).

Đáp án:

Đáp án

Đáp án:

Phương pháp giải

Sử dụng quy tắc tổng hợp lực, quy tắc hình bình hành.

Dựng hình bình hành OACB sao cho OA = OB = 30, \(\widehat {AOC} = \widehat {BOC} = {30^o}\) và \(\overrightarrow {OC} \)cùng hướng với \(\overrightarrow {{F_1}} \).

Khi đó \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {OA} } \right| = OA = 30\), \(\left| {\overrightarrow {{F_4}} } \right| = \left| {\overrightarrow {OB} } \right| = OB = 30\), \(\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = \overrightarrow {{F_{34}}}  = \overrightarrow {OC} \) và \(\left| {\overrightarrow {{F_{34}}} } \right| = \left| {\overrightarrow {OC} } \right|\).

Vì OA = OB nên  OACB là hình thoi. Giả sử I là tâm hình thoi. Xét tam giác AOI vuông tại I:

\(\cos \widehat {OAI} = \frac{{OI}}{{OA}} \Rightarrow OI = OA.\cos \widehat {OAI} = 30.\cos {30^o} = 15\sqrt 3  \Rightarrow OC = 2OI = 30\sqrt 3  = \left| {\overrightarrow {{F_{34}}} } \right|\).

Vì độ lớn lực \(\overrightarrow {{F_2}} \) lớn gấp ba lần độ lớn lực \(\overrightarrow {{F_1}} \) và hai lực này ngược chiều nên \(\overrightarrow {{F_2}}  =  - 3\overrightarrow {{F_1}} \).

Dưới tác động của 4 lực, vật ở vị trí cân bằng nên ta có:

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = \overrightarrow 0  \Rightarrow \overrightarrow {{F_1}}  - 3\overrightarrow {{F_1}}  + \overrightarrow {{F_{34}}}  = \overrightarrow 0  \Rightarrow \overrightarrow {{F_{34}}}  = 2\overrightarrow {{F_1}}  \Rightarrow \left| {\overrightarrow {{F_{34}}} } \right| = 2\left| {\overrightarrow {{F_1}} } \right| = 30\sqrt 3  \Rightarrow \left| {\overrightarrow {{F_1}} } \right| = 15\sqrt 3 \).

\( \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = 3\left| {\overrightarrow {{F_1}} } \right| = 3.15\sqrt 3  = 45\sqrt 3 \).

Vậy \(\left| {\overrightarrow {{F_1}} } \right| + \left| {\overrightarrow {{F_2}} } \right| = 15\sqrt 3  + 45\sqrt 3  = 60\sqrt 3  \approx 104\) (N).

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác ABC có \(AB = 3,AC = 4,\widehat {BAC} = {120^o}.\) Tính (làm tròn kết quả đến hàng đơn vị):

a) Độ dài cạnh BC và độ lớn góc B.

b) Bán kính đường tròn ngoại tiếp

c) Diện tích của tam giác

d) Độ dài đường cao xuất phát từ A

e) \(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {BC} \) với M là trung điểm của BC.

Xem lời giải >>