Đề bài

Hai con lắc lò xo giống nhau treo vào hai điểm trên cùng giá đỡ nằm ngang. Chọn trục tọa độ Ox có phương thẳng đứng, chiều từ trên xuống dưới. Phương trình dao động của hai con lắc là \({x_1} = 3\cos \left( {10\sqrt 3 t} \right)cm\) và \({x_2} = 4\cos (10\sqrt 3 t + \dfrac{\pi }{2})cm\)(t tính bằng s). Biết lò xo có độ cứng \(k{\rm{ }} = {\rm{ }}50{\rm{ }}N/m\), gia tốc trọng trường \(g{\rm{ }} = {\rm{ }}10{\rm{ }}m/{s^2}\). Hợp lực do hai con lắc tác dụng lên giá đỡ trong quá trình dao động có độ lớn cực đại là:

  • A.

    \(5,8{\rm{ }}N\)

  • B.

    \(5,2{\rm{ }}N\)

  • C.

    \(6,8{\rm{ }}N\)

  • D.

    \(4,5{\rm{ }}N\)

Phương pháp giải

Vận dụng lí thuyết về lực đàn hồi trong dao động của con lắc lò xo thẳng đứng

Lời giải của GV Loigiaihay.com

ADCT:

$\begin{array}{l}{\omega ^2} = \dfrac{g}{{\Delta {l_0}}}\\ \Rightarrow \Delta {l_0} = \dfrac{g}{{{\omega ^2}}} = \dfrac{{10}}{{{{\left( {10\sqrt 3 } \right)}^2}}} = \dfrac{1}{{30}}m\end{array}$

Lực tác dụng vào điểm treo chính là lực đàn hồi của lò xo, lực này trực đối với lực đàn hồi tác dụng vào vật nên: ${\overrightarrow {F'} _{dh1}} =  - {\overrightarrow F _{dh1}};{\overrightarrow {F'} _{dh2}} =  - {\overrightarrow F _{dh2}}$

$\begin{array}{l}F = {F_{dh1}} + {F_{dh2}} = k\left( {\Delta {l_0} + {x_1}} \right) + k\left( {\Delta {l_0} + {x_2}} \right) = 2k\Delta {l_0} + k\left( {{x_1} + {x_2}} \right)\\ = 2.50.\dfrac{1}{{30}} + 50\left[ {0,03.\cos \left( {10\sqrt 3 t} \right) + 0,04.\cos \left( {10\sqrt 3 t + \dfrac{\pi }{2}} \right)} \right]\\ \Rightarrow F = 2.50.\dfrac{1}{{30}} + 50\left[ {0,05\cos \left( {10\sqrt 3 t + 0,094} \right)} \right]\\ \Rightarrow {F_{\max }} = 2.50.\dfrac{1}{{30}} + 50.0,05 \approx 5,833N\end{array}$

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Một con lắc đơn gồm một vật nhỏ khối lượng \(m = 2g\) và một dây treo mảnh, chiều  dài \(l\) , được kích thích cho dao động điều hòa, Trong khoảng thời gian Δt con lắc thực hiện được \(40\) dao động. Khi tăng chiều dài con lắc thêm một đoạn \(7,9cm\)  thì cũng trong khoảng thời gian Δt con lắc thực hiện được \(39\) dao động. Lấy gia tốc trọng trường \(g{\rm{ }} = {\rm{ }}9,8m/{s^2}\). Để con lắc với chiều dài tăng thêm có cùng chu kỳ dao động với con lắc chiều dài \(l\), người ta truyền cho vật điện tích \(q{\rm{ }} = {\rm{ }} + {\rm{ }}{0,5.10^{ - 8}}C\) rồi cho nó dao động điều hòa trong một điện trường đều có đường sức thẳng đứng. Vecto cường độ điện trường này có

Xem lời giải >>
Bài 2 :

Một con lắc đơn có chiều dài \(1{\rm{ }}m\), đầu trên cố định đầu dưới gắn với vật nặng có khối lượng m. Điểm cố định cách mặt đất \(2,5{\rm{ }}m\). Ở thời điểm ban đầu đưa con lắc lệch khỏi vị trí cân bằng một góc \(a = {\rm{ }}0,09{\rm{ }}rad\), rồi thả nhẹ khi con lắc vừa qua vị trí cân bằng thì sợi dây bị đứt. Bỏ qua mọi sức cản, lấy \(g{\rm{ }} = {\rm{ }}9,8{\rm{ }}m/{s^2}\). Tốc độ của vật nặng ở thời điểm \(t{\rm{ }} = {\rm{ }}0,08{\rm{ }}s\) có giá trị gần bằng:

Xem lời giải >>
Bài 3 :

Một con lắc gồm lò xo nhẹ có độ cứng \(k{\rm{ }} = {\rm{ }}50{\rm{ }}N/m\) một đầu cố định, đầu kia gắn với một  vật nhỏ khối lượng \({m_1} = {\rm{ }}m\) đặt trên mặt phẳng nằm ngang không ma sát. Ban đầu kéo lò xo dãn một đoạn \(10cm\)  rồi buông nhẹ để $m$ dao động điều hòaỞ thời điểm lò xo có chiều dài cực tiểu, ta đặt nhẹ vật \({m_2} = {\rm{ }}3m\) lên trên \({m_1}\), sau đó cả hai cùng dao động điều hòa với vận tốc cực đại \(50\sqrt 2 cm/s\) . Giá trị của $m$ là:

Xem lời giải >>
Bài 4 :

Một lò xo độ cứng \(k = 50{\rm{ }}N/m\), một đầu cố định, đầu còn lại treo vật nặng khối lượng \(m = 100g\). Điểm treo lò xo chịu được lực tối đa không quá \(4N\). Lấy \(g = 10m/{s^2}\). Để hệ thống không bị rơi thì vật nặng dao động theo phương thẳng đứng với biên độ không quá:

Xem lời giải >>
Bài 5 :

Một con lắc đơn gồm một vật nhỏ có khối lượng \(m = 2{\rm{ }}g\) và một dây treo mảnh, chiều dài \(l\), được kích thích cho dao động điều hòa. Trong khoảng thời gian \(\Delta t\) con lắc thực hiện được \(40\) dao động. Khi tăng chiều dài con lắc thêm một đoạn bằng \(7,9cm\), thì cũng trong khoảng thời gian $Δt$ con lắc thực hiện được 39 dao động. Lấy gia tốc trọng trường \(g = 9,8{\rm{ }}m/{s^2}\). Để con lắc với chiều dài tăng thêm có cùng chu kỳ dao động với con lắc có chiều dài \(l\), người ta truyền cho vật điện tích \(q =  - {10^{ - 8}}C\) rồi cho nó dao động điều hòa trong một điện trường đều có đường sức thẳng đứng. Véc tơ cường độ điện trường này có

Xem lời giải >>
Bài 6 :

Trong thang máy, tại trần người ta treo một con lắc lò xo có độ cứng \(k{\rm{ }} = {\rm{ }}25{\rm{ }}N/m\), vật nặng có khối lượng \(400{\rm{ }}g\). Khi thang máy đứng yên ta cho con lắc dao động điều hòa, chiều dài con lắc thay đổi từ \(32{\rm{ }}cm\) đến \(48{\rm{ }}cm\). Tại thời điểm mà vật ở vị trí thấp nhất thì cho thang máy đi xuống nhanh dần đều với gia tốc \(a = \dfrac{g}{{10}}\) . Lấy \(g = {\pi ^2}m/{s^2} = 10{\rm{ }}m/{s^2}\). Biên độ dao động của vật trong trường hợp này là:

Xem lời giải >>
Bài 7 :

Một con lắc đơn gồm sợi dây mảnh dài \(l = 1m\), vật có khối lượng \(m = 100\sqrt 3 g\) tích điện \(q = {10^{ - 5}}\left( C \right)\). Treo con lắc đơn trong điện trường đều có phương vuông góc với gia tốc trọng trường \(\overrightarrow g \) và có độ lớn \(E = {10^5}V/m\). Kéo vật theo chiều của vec tơ điện trường sao cho góc tạo bởi dây treo của con lắc và \(\overrightarrow g \) bằng \({60^0}\) rồi thả nhẹ để vật dao động. Lực căng cực đại của dây treo là:

Xem lời giải >>
Bài 8 :

Một vật nhỏ có khối lượng \(M = 0,9{\rm{ }}kg\), gắn trên một lò xo nhẹ thẳng đứng có độ cứng \(25{\rm{ }}N/m\) đầu dưới của lò xo cố định. Một vật nhỏ có khối lượng \(m = 0,1{\rm{ }}kg\) chuyển động theo phương thẳng đứng với tốc độ  \(2\sqrt 2 m/s\) đến va chạm mềm với $M$. Sau va chạm hai vật dính vào nhau và cùng dao động điều hòa theo phương thẳng đứng trùng với trục của lò xo. Lấy gia tốc trọng trường \(g{\rm{ }} = {\rm{ }}10{\rm{ }}m/{s^2}\). Biên độ dao động là:

Xem lời giải >>
Bài 9 :

Một con lắc lò xo treo thẳng gồm vật nhỏ khối lượng \(m{\rm{ }} = {\rm{ }}1{\rm{ }}kg\), lò xo nhẹ có độ cứng \(k{\rm{ }} = {\rm{ }}100{\rm{ }}N/m\). Đặt một giá nằm ngang đỡ vật m để lò xo có chiều dài tự nhiên rồi cho giá đỡ chuyển động thẳng đứng xuống nhanh dần đều không vận tốc đầu với gia tốc \(a{\rm{ }} = {\rm{ }}2{\rm{ }}m/{s^2}\). Lấy \(g{\rm{ }} = {\rm{ }}10{\rm{ }}m/{s^2}\). Sau khi rời giá đỡ thì vật m dao động điều hòa với biên độ:

Xem lời giải >>
Bài 10 :

Một lò xo nhẹ làm bằng vật liệu cách điện có độ cứng k = 50N/m, một đầu được gắn cố định, đầu còn lại gắn vào quả cầu nhỏ tích điện q = 5µC, khối lượng m = 50g. Quả cầu có thể dao động không ma sát dọc theo trục lò xo nằm ngang và cách điện. Tại thời điểm ban đầu t = 0 kéo vật tới vị trí lò xo dãn 4 cm rồi thả nhẹ đến thời điểm t = 0,1 s thì thiết lập điện trường không đổi trong thời gian 0,1 s, biết điện trường nằm ngang dọc theo trục lò xo hướng ra xa điểm cố định và có độ lớn E = 105 V/m. Lấy g = 10 m/s2, π2 = 10 . Trong quá trình dao động thì tốc độ cực đại mà quả cầu đạt được gần nhất giá trị nào sau đây?

Xem lời giải >>
Bài 11 :

Một con lắc lò xo gồm lò xo nhẹ có độ cứng 25N/m một đầu được gắn với hòn bi nhỏ có khối lượng 100g. Tại thời điểm t = 0, thả cho con lắc rơi tự do sao cho trục của lò xo luôn nằm theo phương thẳng đứng và vật nặng ở phía dưới lò xo. Đến thời điểm \({t_1} = 0,02\sqrt {30} \,s\) thì đầu trên của lò xo bị giữ lại đột ngột. Sau đó vật dao động điều hòa. Lấy g = 10m/s2. Tại thời điểm \({t_2} = {t_1} + 0,1\,\left( s \right)\), tốc độ của hòn bi gần giá trị nào sau đây?

Xem lời giải >>
Bài 12 :

Một con lắc đơn gồm hòn bi nhỏ bằng kim loại được tích điện q > 0. Khi đặt con lắc vào trong điện trường đều có véc tơ cường độ điện trường nằm ngang thì tại vị trí cân bằng dây treo hợp với phương thẳng đứng một góc α, có \(\tan \alpha  = \dfrac{3}{4}\); lúc này con lắc dao động nhỏ với chu kỳ T1. Nếu đổi chiều điện trường này sao cho véctơ cường độ diện trường có phương thẳng đứng hướng lên và cường độ không đổi thì chu kỳ dao động nhỏ của con lắc lúc này là:

Xem lời giải >>
Bài 13 :

Một con lắc đơn dao động điều hòa với chu kì T tại nơi có thêm trường ngoại lực có độ lớn F theo phương ngang. Nếu quay phương của ngoại lực một góc \(\alpha \left( {{0^0} < \alpha  < {{90}^0}} \right)\) trong mặt phẳng thẳng đứng và giữ nguyên độ lớn thì chu kì dao động là \({T_1} = 2,5\,\,s\) hoặc \({T_2} = 1,6\,\,s\). Chu kì T gần nhất giá trị nào sau đây?

Xem lời giải >>
Bài 14 :

Cho một con lắc dao động tắt dần chậm trong môi trường có ma sát. Nếu sau mỗi chu kì cơ năng của con lắc giảm 5% thì sau 10 chu kì biên độ của nó giảm xấp xỉ

Xem lời giải >>
Bài 15 :

Một vật hình trụ tiết diện nhỏ, có chiều cao \(20\;{\rm{cm}}\), nổi thẳng đứng trong một bể nước rộng. Bỏ qua mọi lực cản, lấy \(g = 10\;{\rm{m}}/{{\rm{s}}^2}\). Khi cân bằng, một nửa vật bị chìm trong nước và mép dưới của vật cách đáy bể một đoạn đủ dài. Từ vị trí cân bằng của vật, truyền cho nó vận tốc ban đầu bằng \(1,5\;{\rm{m}}/{\rm{s}}\) hướng thẳng đứng xuống dưới. Kể từ lúc vật bắt đầu chuyển động đến lúc vận tốc của vật triệt tiêu lần đầu tiên thì tốc độ trung bình của vật gần nhất với giá trị nào sau đây?

Xem lời giải >>
Bài 16 :

Đề thi THPT QG - 2020

Cho hệ vật gồm lò xo nhẹ có độ cứng k = 20 N/m, vật M có khối lượng 30 g được nối với vật N có khối lượng 150 g bằng một sợi dây không dãn vắt qua ròng rọc như hình bên. Bỏ qua mọi ma sát, bỏ qua khối lượng dây và ròng rọc. Ban đầu giữ M tại vị trí để lò xo không biến dạng, N ở xa mặt đất. Thả nhẹ M để cả hai vật cùng chuyển động, sau 0,2 s thì dây bị đứt. Sau khi dây đứt, M dao động điều hòa trên mặt phẳng nằm ngang với biên độ A. Lấy \(g = 10m/{s^2},{\mkern 1mu} {\mkern 1mu} ({\pi ^2} \approx 10).\) Giá trị của A bằng

Xem lời giải >>