Đề bài

Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:

a) \({x^2} - 2\sqrt 5 x + 1 = 0\);

b) \(3{x^2} - 9x + 3 = 0\);

c) \(11{x^2} - 13x + 5 = 0\);

d) \(2{x^2} + 2\sqrt 6 x + 3 = 0\).

Phương pháp giải

a, d) Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), với \(b = 2b'\) và \(\Delta ' = b{'^2} - ac\)

+ Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b - \sqrt {\Delta '} }}{a}\).

+ Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b'}}{a}\).

+ Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

b, c) Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta  = {b^2} - 4ac\)

+ Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta  }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta  }}{{2a}}\).

+ Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

+ Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Lời giải của GV Loigiaihay.com

a) Ta có: \(\Delta ' = {\left( { - \sqrt 5 } \right)^2} - 1.1 = 4 > 0\).

Áp dụng công thức nghiệm thu gọn, phương trình có hai nghiệm phân biệt:

\({x_1} = \sqrt 5  + 2;{x_2} = \sqrt 5  - 2\)

b) Ta có: \(\Delta  = {\left( { - 9} \right)^2} - 4.3.3 = 45 > 0,\sqrt \Delta   = 3\sqrt 5 \).

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{9 + 3\sqrt 5 }}{6} = \frac{{3 + \sqrt 5 }}{2};{x_2} = \frac{{9 - 3\sqrt 5 }}{6} = \frac{{3 - \sqrt 5 }}{2}\)

c) Ta có: \(\Delta  = {\left( { - 13} \right)^2} - 4.5.11 =  - 51 < 0\).

Do đó, phương trình vô nghiệm.

d) Ta có: \(\Delta ' = {\left( {\sqrt 6 } \right)^2} - 2.3 = 0\).

Áp dụng công thức nghiệm thu gọn, phương trình có nghiệm kép:

\({x_1} = {x_2} = \frac{{ - \sqrt 6 }}{2}\).

Xem thêm : Vở thực hành Toán 9

Các bài tập cùng chuyên đề

Bài 1 :

Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(y = x + 3 - m\) cắt parabol \(y = {x^2}\) tại hai điểm phân biệt.

Xem lời giải >>
Bài 2 :

Giải các phương trình sau:

a) \(2{x^2} + \frac{1}{3}x = 0\);

b) \({\left( {3x + 2} \right)^2} = 5\).

Xem lời giải >>
Bài 3 :

Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức \(\Delta \) và xác định số nghiệm của mỗi phương trình sau:

a) \(11{x^2} + 13x - 1 = 0\);

b) \(9{x^2} + 42x + 49 = 0\);

c) \({x^2} - 2x + 3 = 0\).

Xem lời giải >>
Bài 4 :

Kích thước màn hình ti vi hình chữ nhật được xác định bằng độ dài đường chéo. Ti vi truyền thống có định dạng 4:3, nghĩa là tỉ lệ giữa chiều dài và chiều rộng của màn hình là 4:3. Hỏi diện tích của màn hình ti vi truyền thống 37in là bao nhiêu? Diện tích của màn hình ti vi LCD 37 in có định dạng 16:9 là bao nhiêu? Màn hình ti vi nào có diện tích lớn hơn? Ở đây, các diện tích màn hình được tính bằng inch vuông.

Xem lời giải >>
Bài 5 :

Một mảnh vườn hình chữ nhật có chiều rộng nhỏ hơn chiều dài 6m và có diện tích là \(280{m^2}\). Tính các kích thước của mảnh vườn đó.

Xem lời giải >>
Bài 6 :

Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:

a) \({x^2} - 2\sqrt 5 x + 1 = 0\);

b) \(3{x^2} - 9x + 3 = 0\);

c) \(11{x^2} - 13x + 5 = 0\);

d) \(2{x^2} + 2\sqrt 6 x + 3 = 0\).

Xem lời giải >>
Bài 7 :

a) Bằng cách đưa về dạng phương trình tích, hãy giải các phương trình sau:

i) \(3{x^2} - 12x = 0\)

ii) \({x^2} - 16 = 0\)

b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phép biến đổi nào?

Xem lời giải >>
Bài 8 :

Giải các phương trình:

a) \(3{x^2} - 27 = 0\)

b) \({x^2} - 10x + 25 = 16\)

Xem lời giải >>
Bài 9 :

Giải các phương trình:

a) \(5{x^2} + 7x = 0\)

b) \(5{x^2} - 15 = 0\)

Xem lời giải >>
Bài 10 :

Dùng công thức nghiệm để giải các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.

a) \({x^2} - x - 20 = 0\)

b) \(6{x^2} - 11x - 35 = 0\)

c) \(16{y^2} + 24y + 9 = 0\)

d) \(3{x^2} + 5x + 3 = 0\)

e) \({x^2} - 2\sqrt 3 x - 6 = 0\)

g) \({x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3  = 0\)

Xem lời giải >>
Bài 11 :

Giải các phương trình

a) \({x^2} - x - 5 = 0\)

b) \(2{x^2} - 0,5x - 0,03 = 0\)

c) \( - 16{x^2} + 8x - 1 = 0\)

d) \( - 2{x^2} + 5x - 4 = 0\)

e) \(\frac{1}{5}{x^2} - 5 = 0\)

g) \(3{x^2} + \sqrt 2 x = 0\)

Xem lời giải >>
Bài 12 :

Mảnh đất của bác An có dạng hình chữ nhật với chiều dài hơn chiều rộng 10m. Ở mỗi góc của mảnh đất, bác An đã dành 1 phần đất có dạng tam giác vuông cân với cạnh góc vuông bằng \(\frac{1}{8}\) chiều rộng của mảnh đất để trồng hoa (Hình 8). Tính chiều rộng mảnh đất đó, biết diện tích còn lại của mảnh đất không tính phần trồng hoa là 408 \({m^2}.\)

Xem lời giải >>
Bài 13 :

Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó:

a) 2x – x2 = 0;

b) \({x^2} - 6x + 9 = \frac{1}{2}\)

Xem lời giải >>
Bài 14 :

Giải các phương trình sau:

a) 3x2 = - 4x;

b) \(2{x^2} - 3 = 0\)

Xem lời giải >>
Bài 15 :

Giải các phương trình sau:

a) \(2{x^2} + 3x - 7 = x(x + 3)\)

b) \(\frac{{x(x - 1)}}{3} + 2 = \frac{{x + 5}}{4}\).

Xem lời giải >>
Bài 16 :

Phương trình nào sau đây có nghiệm x = 2?

A. \({x^2} - 6x + 5 = 0\)

B. \({x^2} - 5x + 6 = 0\)

C. \(2{x^2} + 3x - 2 = 0\)

D. \(3{x^2} + 5x + 2 = 0\)

Xem lời giải >>
Bài 17 :

Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức \(\Delta \) và xác định số nghiệm của mỗi phương trình sau:

a) \(11{x^2} + 13x - 1 = 0\);

b) \(9{x^2} + 42x + 49 = 0\);

c) \({x^2} - 2x + 3 = 0\).

Xem lời giải >>
Bài 18 :

Giải các phương trình:

a) \(2{x^2} - 7x = 0;\)

b) \(- {x^2} + \sqrt 8 x - \sqrt {21}  = 0;\)

c) \(- \sqrt 5 {x^2} + 2x + 3\sqrt 5  = 0;\)

d) \(1,5{x^2} - 0,4x - 1,2 =  - 1,1{x^2} + 1;\)

e) \(\left( {\sqrt 7  - 2} \right){x^2} + 3x + 10 = {x^2} + 10;\)

g) \(- \sqrt {32} {x^2} - 4x + \sqrt 2  = \sqrt 2 {x^2} + x - \sqrt 8 \)

Xem lời giải >>