Tính nhẩm nghiệm của các phương trình:
a) 24x2 – 19x – 5 = 0
b) 2,5x2 + 7,2x + 4,7 = 0
c) \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0\)
d) \(2{x^2} - (2 + \sqrt 3 )x + \sqrt 3 = 0\)
Dựa vào: Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) trong đó
* a + b + c = 0 thì phương trình bậc hai luôn luôn có hai nghiệm phân biệt là:\({x_1} = 1;{x_2} = \frac{c}{a}\).
*a - b + c = 0 thì phương trình bậc hai luôn luôn có hai nghiệm phân biệt là: \({x_1} = - 1;{x_2} = - \frac{c}{a}\).
a) Phương trình có a + b + c = 24 + (-19) + (-5) = 0.
Vậy phương trình có hai nghiệm là x1 = 1; x2 = \(\frac{c}{a} = - \frac{5}{{24}}\).
b) Phương trình có a – b + c = 2,5 – 7,2 + 4,7 = 0.
Vậy phương trình có hai nghiệm là x1 = - 1; x2 = \( - \frac{c}{a} = - \frac{{47}}{{25}}\).
c) Phương trình có a – b + c = \(\frac{3}{2} - 5 + \frac{7}{2}\) = 0.
Vậy phương trình có hai nghiệm là x1 = - 1; x2 = \( - \frac{c}{a} = - \frac{7}{3}\).
d) Phương trình có a + b + c = 2 + \(\left[ { - \left( {2 + \sqrt 3 } \right)} \right] + \sqrt 3 \) = 0.
Vậy phương trình có hai nghiệm là x1 = 1; x2 = \(\frac{c}{a} = \frac{{\sqrt 3 }}{2}\).
Các bài tập cùng chuyên đề
Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có $a - b + c = 0$. Khi đó
Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$
Biết rằng phương trình $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.
Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.
Chọn phát biểu đúng. Phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có \(a + b + c = 0\). Khi đó
Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình \( - 3{x^2} + 5x + 1 = 0\).
Biết rằng phương trình \(m{x^2} + \left( {3m - 1} \right)x + 2m - 1 = 0\,\left( {m \ne 0} \right)\) luôn có nghiệm \({x_1};{x_2}\) với mọi \(m\). Tìm \({x_1};{x_2}\) theo \(m\).
Cho phương trình \(3{x^2} + 7x + m = 0\). Tìm \(m\) để phương trình có hai nghiệm phân biệt cùng âm.
Cho phương trình \(2{x^2} - 7x + 5 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a + b + c\).
b) Chứng tỏ rằng \({x_1} = 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Cho phương trình \(3{x^2} + 5x + 2 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a - b + c\).
b) Chứng tỏ rằng \({x_1} = - 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Tính nhẩm nghiệm của các phương trình sau:
a) \(3{x^2} - 11x + 8 = 0\);
b) \(4{x^2} + 15x + 11 = 0\);
c) \({x^2} + 2\sqrt 2 x + 2 = 0\), biết phương trình có một nghiệm là \(x = - \sqrt 2 \).
Tính nhẩm nghiệm của các phương trình sau:
a) \(2{x^2} - 9x + 7 = 0\);
b) \(3{x^2} + 11x + 8 = 0\);
c) \(7{x^2} - 15x + 2 = 0\), biết phương trình có một nghiệm \({x_1} = 2\).
Tính nhẩm nghiệm của các phương trình sau:
a) \(\sqrt 2 {x^2} - \left( {\sqrt 2 + 1} \right)x + 1 = 0\);
b) \(2{x^2} + \left( {\sqrt 3 - 1} \right)x - 3 + \sqrt 3 = 0\).
Tính nhẩm nghiệm của các phương trình:
a) \( - 315{x^2} - 27x + 342 = 0\)
b) \(2022{x^2} + 2023x + 1 = 0\)
Tính nhẩm nghiệm của các phương trình:
a) \(24{x^2} - 19x - 5 = 0\)
b) \(2,5{x^2} + 7,2x + 4,7 = 0\)
c) \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0\)
d) \(2{x^2} - (2 + \sqrt 3 )x + \sqrt 3 = 0\)
Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.
a) \(14{x^2} - 13x - 27 = 0\)
b) \(5,4{x^2} + 8x + 2,6 = 0\)
c) \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)
d) \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5 = 0\)
Không tính \(\Delta\), giải phương trình \(4{x^2} - 7x + 3 = 0\).
Không tính \(\Delta\), giải phương trình \(2{x^2} - 9x - 11 = 0\).
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
b) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
c) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
d) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
Không tính \(\Delta \), giải phương trình:
a) \(3{x^2} - x - 2 = 0\)
b) \( - 4{x^2} + x + 5 = 0\)
c) \(2\sqrt 3 {x^2} + \left( {5 - 2\sqrt 3 } \right)x - 5 = 0\)
d) \( - 3\sqrt 2 {x^2} + \left( {4 - 3\sqrt 2 } \right)x + 4 = 0\)
Không tính \(\Delta \), hãy giải các phương trình:
a) \({x^2} - 3x + 2 = 0\)
b) \( - 3{x^2} + 5x + 8 = 0\)
c) \(\frac{1}{3}{x^2} + \frac{1}{6}x - \frac{1}{2} = 0\)
Cho phương trình \(3{x^2} - 7x + 4 = 0\)
a) Xác định hệ số a, b, c rồi tính a + b + c.
b) Chứng minh \({x_1} = 1\) là một nghiệm của phương trình.
c) Áp dụng định lí Viète để tìm nghiệm x2.
2. Cho phương trình \(2{x^2} + 5x + 3 = 0\)
a) Xác định hệ số a, b, c rồi tính a - b + c.
b) Chứng minh \({x_1} = - 1\) là một nghiệm của phương trình.
c) Tìm nghiệm x2.
Tính nhẩm nghiệm của các phương trình sau:
a) \( - 5{x^2} + 2x + 3 = 0\)
b) \(4{x^2} + 27x + 23 = 0\)
c) \(6,8{t^2} - 4,7x - 2,1 = 0\)
Tính nhẩm nghiệm của các phương trình sau:
a) \(13,6{x^2} - 15,8x + 2,2 = 0\)
b) \(\sqrt 2 {x^2} + \left( {\sqrt 3 + \sqrt 2 } \right)x + \sqrt 3 = 0\)
Với mỗi trường hợp sau, đã cho biết một nghiệm x1 của phương trình, hãy tìm nghiệm còn lại:
a) \(2{x^2} - 7x + 3 = 0;{x_1} = 3\)
b) \(3{x^2} - 4x - 6 + 4\sqrt 2 = 0;{x_1} = \sqrt 2 \)
c) \(2{x^2} + 7x + 3 = 0;{x_1} = - \frac{1}{2}\)
d) \({x^2} - 4mx + m + 2 = 0;{x_1} = 1\)
Tính nhẩm nghiệm của các phương trình sau:
a) \(\sqrt 3 {x^2} - \left( {\sqrt 3 + 1} \right)x + 1 = 0\);
b) \(3{x^2} + \left( {\sqrt 5 - 1} \right)x - 4 + \sqrt 5 = 0\);
c) \(2{x^2} - 3\sqrt 5 x + 5 = 0\), biết rằng phương trình có một nghiệm là \(x = \sqrt 5 \).
Chứng tỏ rằng nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm là \({x_1}\), \({x_2}\) thì đa thức \(a{x^2} + bx + c\) được phân tích được thành nhân tử như sau: \(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\).
Áp dụng: Phân tích các đa thức sau thành nhân tử: \(2{x^2} - 9x + 7\); \(4{x^2} + \left( {\sqrt 2 - 3} \right)x - 7 + \sqrt 2 \).
Nghiệm của phương trình x2 – 15x – 16 = 0 là
A. \({x_1} = - 1;{x_2} = 16\)
B. \({x_1} = - 1;{x_2} = - 16\)
C. \({x_1} = 1;{x_2} = - 16\)
D. \({x_1} = 1;{x_2} = 16\)
Nếu phương trình \({x^2} - 2mx - m = 0\) có một nghiệm là -1 thì nghiệm của lại là:
A. 2.
B. -2.
C. -m.
D. m.
Tính nhẩm nghiệm của các phương trình sau:
a) \(2{x^2} - 9x + 7 = 0\);
b) \(3{x^2} + 11x + 8 = 0\);
c) \(7{x^2} - 15x + 2 = 0\), biết phương trình có một nghiệm \({x_1} = 2\).