Quỹ đạo chuyển động của một quả bóng được cho bởi công thức \(y = 1,5 + x - 0,098{x^2}\), trong đó y (mét) là độ cao của quả bóng so với mặt đất và x (mét) là khoảng cách theo phương ngang từ vị trí của quả bóng đến vị trí ném (xem hình bên). Tính khoảng cách theo phương ngang từ vị trí ném bóng đến vị trí quả bóng chạm đất.
+ Vật chạm đất khi \(y = 0\), tức là \(1,5 + x - 0,098{x^2} = 0\).
+ Giải phương trình vừa tìm được, lấy giá trị x dương, từ đó rút ra kết luận.
Vật chạm đất khi \(y = 0\), tức là \(1,5 + x - 0,098{x^2} = 0\)
Vì \(\Delta = {1^2} - 4.1,5.\left( { - 0,098} \right) = 1,588 > 0\). Vì \(x > 0\) nên \(x = \frac{{ - 1 - \sqrt {1,588} }}{{2.\left( { - 0,098} \right)}} \approx 11,53\).
Vậy khoảng cách theo phương ngang từ vị trí ném bóng đến vị trí bóng chạm đất là khoảng 11,53m.
Các bài tập cùng chuyên đề
Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta = {b^2} - 4ac$. Phương trình đã cho vô nghiệm khi:
Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta = {b^2} - 4ac > 0$ . Khi đó phương trình có hai nghiệm là
Tính biệt thức $\Delta $ từ đó tìm các nghiệm (nếu có ) của phương trình ${x^2} - 2\sqrt 2 x + 2 = 0$
Tìm điều kiện của tham số $m$ để phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có hai nghiệm phân biệt .
Tìm các giá trị của tham số $m$ để phương trình \({x^2} + mx - m = 0\) có nghiệm kép.
Tìm điều kiện của tham số $m$ để phương trình \({x^2} + (1 - m)x - 3 = 0\) vô nghiệm
Cho phương trình ${x^2} - \left( {m - 1} \right)x - m = 0$. Kết luận nào sau đây là đúng?
Cho phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có biệt thức \(\Delta = {b^2} - 4ac > 0\), khi đó phương trình đã cho:
Cho phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có biệt thức \(\Delta = {b^2} - 4ac = 0\) . Khi đó phương trình có hai nghiệm là
Tính biệt thức \(\Delta \) từ đó tìm các nghiệm (nếu có ) của phương trình \(\sqrt 3 {x^2} + \left( {\sqrt 3 - 1} \right)x - 1 = 0\)
Tìm điều kiện của tham số m để phương trình \({x^2}\; - {\rm{ }}2(m - 2)x\; + {\rm{ }}{m^2} - 3m\; + {\rm{ }}5\; = 0\) có hai nghiệm phân biệt .
Tìm các giá trị của tham số m để phương trình \({x^2} + (3 - m)x - m + 6 = 0\) có nghiệm kép.
Tìm điều kiện của tham số m để phương trình \(2{x^2} + 5x + m - 1 = 0\) vô nghiệm
Cho phương trình \(2{{\rm{x}}^2} + (2m - 1)x + {m^2} - 2m + 5 = 0\). Kết luận nào sau đây là đúng?
Giải phương trình \(2{x^2} - 5x + 3 = 0\).
Giải phương trình: \({x^2} + 5x - 7 = 0\)
Phương trình \(2\left( {{x^2} - 1} \right) = x\left( {mx + 1} \right)\) có một nghiệm (tính cả nghiệm kép) khi:
Phương trình \(\left( {m - 2} \right){x^2} + 2x - 1 = 0\) có nghiệm kép khi:
Cho hai phương trình \({x^2} - 2x + a = 0\) và \({x^2} + x + 2a = 0.\) Để hai phương trình cùng vô nghiệm thì:
Áp dụng công thức nghiệm, giải các phương trình sau:
a) \(2{x^2} - 5x + 1 = 0\);
b) \({x^2} + 8x + 16 = 0\);
c) \({x^2} - x + 1 = 0\).
Dùng công thức nghiệm của phương trình bậc hai, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 2 = 0\);
b) \(4{x^2} + 28x + 49 = 0\);
c) \(3{x^2} - 3\sqrt 2 x + 1 = 0\).
Nhắc lại công thức tính hai nghiệm \({x_1},{x_2}\) của phương trình trên.
Các nghiệm của phương trình \({x^2} + 7x + 12 = 0\) là
A. \({x_1} = 3;{x_2} = 4\).
B. \({x_1} = - 3;{x_2} = - 4\).
C. \({x_1} = 3;{x_2} = - 4\).
D. \({x_1} = - 3;{x_2} = 4\).
Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức \(d = 0,05{v^2} + 1,1v\) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?
Cho phương trình bậc hai \({x^2} - 4x + 3 = 0\).
a) Thay mỗi dấu ? bằng số thích hợp để viết lại phương trình đã cho thành:
\({x^2} - 4x + 4 = ?\) hay \({\left( {x - 2} \right)^2} = ?\) (*)
b) Giải phương trình (*), từ đó tìm nghiệm của phương trình đã cho.
Giải các phương trình:
a) \(7{x^2} - 3x + 2 = 0\)
b) \(3{x^2} - 2\sqrt 3 x + 1 = 0\)
c) \( - 2{x^2} + 5x + 2 = 0\)
Trả lời câu hỏi trong Hoạt động khởi động (trang 11):
Sau khi được ném theo chiều từ dưới lên, độ cao h(m) của một quả bóng theo thời gian t (giây), được xác định bởi công thức h = 2 + 9t – 5t2 . Thời gian từ lúc ném cho đến khi bóng chạm đất là bao lâu?
Giải các phương trình:
a) x(x + 8) = 20
b) \(x(3x - 4) = 2{x^2} + 5\)
c) \({(x - 5)^2} + 7x = 65\)
d) \((2x + 3)(2x - 3) = 5(2x + 3)\)
Nghiệm của phương trình \({x^2} - 14x + 13 = 0\) là
A. \({x_1} = - 1;{x_2} = 13\)
B. \({x_1} = - 1;{x_2} = - 13\)
C. \({x_1} = 1;{x_2} = - 13\)
D. \({x_1} = 1;{x_2} = 13\)
Xét phương trình \(2{x^2} - 4x - 16 = 0\) (1)
Chia 2 vế của phương trình (1), ta được phương trình \({x^2} - 2x - 8 = 0\) (2)
a) Tìm số thích hợp cho “?” khi biến đổi phương trình (2) về dạng: ${{\left( x-? \right)}^{2}}=?$.
b) Từ đó, hãy giải phương trình 2.
c) Nêu các nghiệm của phương trình (1).