Một lò xo độ cứng \(k = 50 N/m\), một đầu cố định, đầu còn lại treo vật nặng khối lượng \(m = 100g\). Điểm treo lò xo chịu được lực tối đa không quá \(4 N\). Lấy \(g = 10m/s^2\). Để hệ thống không bị rơi thì vật nặng dao động theo phương thẳng đứng với biên độ không quá
10 cm.
5 cm.
8 cm.
6 cm.
+ Áp dụng biểu thức lực đàn hồi cực đại của lò xo treo thẳng đứng: \({F_{d{h_{{\rm{max}}}}}} = k(\Delta l + A)\)
+ Áp dụng biểu thức tính độ dãn của lò xo treo thẳng đứng tại vị trí cân bằng: \(\Delta l = \dfrac{{mg}}{k}\)
Để hệ thống không bị rơi, => lực đàn hồi cực đại ≤ \(4N\)
\( \to {F_{d{h_{{\rm{max}}}}}} = k(\Delta l + A) \le 4N \leftrightarrow k(\dfrac{{mg}}{k} + A) \le 4 \leftrightarrow mg + kA \le 4 \to A \le \dfrac{{4 - 0,1.10}}{{50}} = 0,06m = 6cm\)
Đáp án : D
Các bài tập cùng chuyên đề
Con lắc lò xo gồm vật nhỏ gắn với lò xo nhẹ dao động điều hòa theo phương ngang. Lực kéo về tác dụng vào vật luôn
Một con lắc lò xo dao động theo phương ngang với cơ năng dao động là 20mJ và lực đàn hồi cực đại là 2N. Biên độ dao động của con lắc là
Một con lắc lò xo treo thẳng đứng gồm lò xo có khối lượng không đáng kể . Khi vật nằm cân bằng, lò xo gian một đoạn \(∆l\). Tỉ số giữa lực đàn hồi cực đại và cực tiểu trong quá trình vật dao động là $\dfrac{{{F_{dhmax}}}}{{{F_{dhmin}}}} = a$ . Biên độ dao động của vật được tính bởi biểu thức nào dưới đây ?
Một chất điểm có khối lượng \(500 g\) dao động điều hòa dưới tác dụng của một lực kéo về có biểu thức \(F = -0,8cos4t (N)\). Biên độ dao động của chất điểm bằng
Một con lắc lò xo gồm vật nặng có khối lượng $m$, lò xo có độ cứng k được treo thẳng đứng tại nơi có gia tốc trọng trường là $g$. Kích thích cho con lắc dao động điều hòa theo phương thẳng đứng với biên độ. Khi vật đi qua vị trí cân bằng thì lực đàn hồi của lò xo có độ lớn :
Một con lắc lò xo treo thẳng đứng được kích thích cho dao động điều hòa. Thời gian quả cầu đi từ vị trí cao nhất đến vị trí thấp nhất là 0,15s và tỉ số giữa độ lớn của lực đàn hồi lò xo và trọng lượng quả cầu gắn ở đầu con lắc khi nó ở vị trí thấp nhất là 1,8. Lấy g = π2 m/s2. Biên độ dao động của con lắc là:
Một con lắc lò xo treo thẳng đứng với biên độ \(8cm\). Khoảng thời gian từ lúc lực đàn hồi cực đại đến lúc lực đàn hồi cực tiểu là \(\dfrac{T}{3}\), với \(T\) là chu kì dao động của con lắc. Tốc độ của vật nặng khi nó cách vị trí thấp nhất \(2cm\). Lấy\(g = {\pi ^2}\left( {m/{s^2}} \right)\).
Con lắc lò xo treo thẳng đứng, dao động điều hòa: \(x = 2cos20t (cm)\). Chiều dài tự nhiên của lò xo là \(l_0= 30cm\), lấy \(g = 10m/s^2\). Chiều dài nhỏ nhất và lớn nhất của lò xo trong quá trình dao động lần lượt là:
Một con lắc lò xo dao động điều hòa theo phương thẳng đứng với chu kì $0,4s$ và biên độ $8cm$. lấy $g = 10 m/s^2$ và \({\pi ^2} \approx 10\). Khoảng thời gian ngắn nhất giữa hai lần công suất tức thời của lực đàn hồi bằng $0$ là:
Con lắc lò xo dao động trên mặt phẳng nằm nghiêng góc α = 300 có độ cứng 50N/m, biên độ 6cm. Biết vật nặng có khối lượng 200g và lấy g = 10m/s2. Hướng và độ lớn lực đàn hồi của lò xo tác dụng vào điểm treo vật của lò xo khi vật đi qua VTCB.
Một con lắc lò xo nằm ngang dao động theo phương trình x = 5cos(2πt - π/3)(cm) ( x tính bằng cm; t tính bằng s). Kể từ t = 0, lực đàn hồi đổi chiều lần đầu tại thời điểm:
Một vật dao động theo phương trình \(x = 20\cos (5\pi t/3 - \pi /6)\) cm. Kể từ lúc \(t = 0\) đến lúc vật đi qua vị trí \(x = -10 cm\) lần thứ \(2015\) theo chiều âm thì lực hồi phục sinh công dương trong thời gian:
Một con lắc lò xo gồm vật nhỏ nặng 500g gắn với lò xo độ cứng 50N/m đặt trên mặt phẳng ngang nhẵn. Từ vị trí cân bằng truyền cho vật một vận tốc 1m/s dọc theo trục lò xo để vật dao động điều hòa. Công suất cực đại của lực đàn hồi lò xo trong quá trình dao động bằng:
Hai con lắc lò xo nằm ngang dao động điều hòa dọc theo hai đường thẳng song song kề nhau và song song với trục Ox. Hai vật nặng có cùng khối lượng. Vị trí cân bằng của hai dao động đều nằm trên một đường thẳng qua gốc tọa độ và vuông góc với trục Ox. Đồ thị (1), (2) lần lượt biểu diễn mối liên hệ giữa lực kéo về Fkv và li độ x của con lắc 1 và con lắc 2. Biết tại thời điểm t, hai con lắc cùng qua vị trí cân bằng theo cùng một chiều. Sau đó một khoảng thời gian ngắn nhất bằng 0,5s con lắc 1 có động năng bằng một nửa cơ năng của nó, thì thế năng của con lắc 2 khi đó có giá trị gần nhất với giá trị nào sau đây?
Một con lắc lò xo gồm một vật nhỏ có khối lượng m = 200 g và lò xo có độ cứng k, đang dao động điều hòa theo phương thẳng đứng. Chọn gốc tọa độ ở vị trí cần bằng, chiều dương hướng xuống dưới. Đồ thị biểu diễn sự phụ thuộc của lực đàn hồi theo thời gian được cho như hình vẽ. Biết F1+3F2+6F3=0. Lấy g = 10 m/s2. Tỉ số thời gian lò xo giãn với thời gian lò xo nén trong một chu kì gần giá trị nào nhất sau đây?
Một con lắc lò xo thẳng đứng gồm vật nặng khối lượng \(m{\rm{ }} = {\rm{ }}1kg\) và lò xo có độ cứng k =100N.m . Vật nặng được đặt trên giá đỡ nằm ngang sao cho lò xo không biến dạng. Cho giá đỡ đi xuống không vận tốc ban đầu nhanh dần đều với gia tốc \(a = \dfrac{g}{5} = 2m/{s^2}\). Chọn phương án đúng:
Một con lắc lò xo treo thẳng đứng. Từ vị trí cân bằng, nâng vật nhỏ của con lắc theo phương thẳng đứng lên đến vị trí lò xo không biến dạng rồi buông ra, đồng thời truyền cho vật vận tốc \(10\pi \sqrt 3 cm/s\) hướng về vị trí cân bằng. Con lắc dao động điều hòa với tần số \(5 Hz\). Lấy \(g = 10 m/s^2\) ;\({\pi ^2= 10}\). Trong một chu kì dao động, khoảng thời gian mà lực kéo về và lực đàn hồi của lò xo tác dụng lên vật ngược hướng nhau là
Một chất điểm dao động điều hoà trên trục Ox. Lực kéo về tác dụng lên chất điểm có độ lớn cực đại khi chất điểm
Một con lắc lò xo dao động điều hoà theo phương thẳng đứng. Trong quá trình dao động của vật, chiều dài của lò xo thay đổi từ 20 cm đến 28 cm. Biên độ dao động của vật là